Strange moons
According to the explanations given, in the solar system, gaseous moons cannot be formed through the two conventional processes of producing gaseous universes. However, there are wonders in our cosmic neighborhood that are formed in a different way.
In the case of Earth, the Moon is likely formed from material blasted from Earth following a massive collision with a Mars-sized protoplanet. These remnants formed a ring that created the moon’s core through accretion. But could the impact of a gas giant planet eject enough gas to form a gas moon?
Unfortunately no. Rocky planets can experience such collisions, but remember when Comet Shoemaker-Levy 9 hit Jupiter in 1994 and disappeared, Jesse Christiansen of the California Institute of Technology told Space.com. Gas giants devour everything. Anything that hits a gas giant just becomes part of the gas giant instead of throwing debris into space.
Another strange case is the trapped moons. For example, the moons of Mars, Phobos, and Deimos, are trapped by the red planet’s gravity. Saturn’s outermost moon Phoebe is a captured comet mass, and Neptune’s moon Triton is a Kuiper Belt mass that was trapped by Neptune’s gravity millions of years ago. They did not form around the planet, but formed on their own in space and then drifted until they were finally trapped by a planet’s gravity.
Now, the question arises, can a smaller gas planet be captured by a larger gas planet? After all, gaseous worlds can reach up to 12 times the size of Jupiter, so in principle, they could trap a gaseous world the size of Neptune.
Gaseous extrasolar moons
It seems possible for smaller gaseous bodies to be captured by larger gaseous planets. “It’s possible that there are (gas) moons around the size of Neptune around giant exoplanets,” Christiansen said.
The two possible exomoons mentioned at the beginning of the article (Kepler 1625b-i and 1708b-i) are both gas giants in their own right but appear to be originally moons of larger gas giants. “Both of these are candidates,” Christiansen says. “We see something in the data that is consistent with the moon, but other phenomena could also explain it.”
Assuming that Kepler 1625b-i is a real moon, it has a mass 19 times that of Earth (about 6% of the mass of Jupiter), is similar in mass to Neptune, and accompanies a gas planet with a mass 30 times the mass of Earth and a diameter equal to half that of Jupiter. Kepler 1708b-i is probably less massive than Kepler 1625b-i, has a diameter about five times that of Earth (about half the diameter of Kepler 1625b-i), and orbits a gas planet 4.6 times the size of Jupiter.