Connect with us


Air pollution control in South Korean style



Air pollution control in South Korean style

Air pollution control in South Korean style. Air pollution is one of the most important problems in the field of environment, which is the cause of a significant number of deaths worldwide. In recent years, South Korea has taken various solutions to deal with air pollution, many of which are based on technological advances.

Air pollution control in South Korean style

In this article we’re going to examine the air pollution control in South Korean Style. Clean air is one of the priorities of all societies in the world, and it has been raised as one of the national priorities in South Korea. For this reason, the country has initiated urgent measures to protect the health of its citizens from air pollution. Among these measures, we can mention serious dealing with pollutants, increasing vegetation, abandoning diesel engines, and moving towards a sustainable transportation system.

In this day and age, breathing clean air has become a privilege that most people find difficult to enjoy after pollution reaches alarming levels, especially in cities. Due to the health problems caused by air pollution, governments around the world are working to eliminate it.

Air pollution is the most important environmental crisis that causes more than seven million premature deaths every year. To make things clearer, considering fresh air as an advantage means that 90% of people breathe dirty air and face the risk of developing asthma, heart disease, and lung cancer. Just as air pollution affects human health, it also affects the health of the planet, and many factors of air pollution are also caused by climate change.

It is obvious that this phenomenon is an acute problem in urban environments and it seems that it is more severe in some countries than others because it fits with the lifestyle of the people and the nature of the economy of each country. For example, South Korea saw one of the highest levels of air pollution, especially in its capital city of Seoul, which between 2009 and 2013 had the highest average concentration of toxic particles in the air compared to major capital cities such as Paris and London.

Experts estimate that this level of air pollution was responsible for 16 percent of deaths in Seoul in 2010, and levels of toxic particulate matter “PM2.5” there reached double the internationally recommended amount. These particles penetrate deep into the lungs, heart, and blood vessels and pose the greatest risks to human health.

During the COVID-19 pandemic and the resulting quarantine, the concentration of air pollutants in South Korea decreased by 27%. However, the rift caused by the pandemic cannot hide the reality that South Korea is famous for. This fact is fine dust or “yellow dust”. The yellow dust storm carries harmful particles such as sulfur, carbon monoxide, heavy metals, and other carcinogenic substances. These particles do not only affect South Korea but also other East Asian countries. For this reason, the need for solutions to save the future is felt.

Therefore, the South Korean authorities are trying to fulfill their commitment to reduce air pollution by taking advantage of their superiority in the field of technology. This perspective paved the way for the birth of many qualitative innovations. In this regard, the South Korean government created the “Comprehensive Fine Dust Management Program”, which seemed to be the most ambitious plan. The aim of this plan was to reduce the emission of PM2.5 particles by 35.8% in 2022.

Among these measures, the South Korean government compiled a list of areas that have schools, kindergartens, or facilities for the elderly, and designed extensive measures to control greenhouse gas emissions and turn them into clean areas as quickly as possible. These measures included limiting the use of old diesel vehicles and reducing working hours at polluting facilities. The South Korean government also announced plans to plant trees close together along rivers and roads to direct air into the city center.

In addition, Seoul announced that it will ban diesel vehicles from all public sector and mass transit fleets by 2025.

To protect South Korea’s future, the country’s officials have decided to install air purifiers in classrooms across the country and subsidize the use of liquefied petroleum gas (LPG) fuel in school buses, which is harmful to the environment. They deliver less to the environment.

Read More: What is mazut and what are its disadvantages for humans and the environment?

Air pollution control in South Korean style

Forests in the direction of the wind

The South Korean government recently announced that it plans to increase the extent of forest areas in the country’s capital by 2025. This is one of the latest government projects to cool and clean the air in the Seoul metropolis by expanding forest areas. The first phase of this project was completed in 2021.

Air pollution control in South Korean style

The main goal of this project is to create so-called “wind paths” that contain trees and connect the mountains around Seoul to the inner city areas full of buildings. According to Seoul officials, fresh air from the mountains can be channeled into the city, which often suffers from trapped heat. As a result, the temperature level and air pollutants are reduced.

The second phase of the project will expand the number of trees planted in the first phase to two urban areas in the south and north of Seoul. The process of tree planting will be followed during the years 2024 to 2025.

By 2030, Seoul officials hope to increase green space by 30 percent and dedicate 80 percent of inner-city trips to sustainable modes of transportation such as walking, cycling, and public transportation.

An army of robots against air pollution

As robots are an integral part of South Korea’s technology landscape, 5G-equipped autonomous robots have begun to circulate in industrial complexes to monitor air quality and provide real-time air quality data. For example, six automated robots rotate around the clock in an industrial complex that is about 50 years old, working with a control tower and 20 weather monitoring stations. In 2021, the telecommunications company LG Uplus collaborated with the city of Junju in South Korea to demonstrate an air monitoring system using automated robots and air quality measuring equipment in this industrial complex. The information collected in the work process of the robots is used for urban management.

Air pollution control in South Korean style
Robots equipped with various sensors can detect unusual phenomena such as fire or smoke to prevent accidents. The collected information about air quality is used to create a large database and improve the quality of life.

In September 2020, LG Uplus demonstrated a 5G-connected autonomous robot at an oil refinery in Seosan. The robot used 5G connectivity and satellite-based routing methods to navigate around the refinery.

Drones that fight air pollution

While robots monitor environmental impacts on the ground, drones also measure air quality and monitor emissions of greenhouse gases and toxic substances in the construction and industrial sectors, as well as beach pollution for up to 20 minutes. They monitor four kilometers away.

Air pollution control in South Korean style
As soon as any of the drones detects a high concentration of pollutants, it sends a warning to the control center so that the inspectors go to the desired location and check the situation there and the compliance of its management with the rules and regulations. If any violation is observed, the official of the center will face administrative fines and legal accountability.

South Korea’s first air quality monitoring satellite

South Korea’s Ministry of Science and Information Technology announced that it will provide its residents with data on air quality and seven types of air pollutants. The data comes from the country’s environment satellite, which was launched in 2020, so there is no need to rely on foreign satellites.

Air pollution control in South Korean style

In an important step to investigate the world’s air quality, South Korea successfully launched its satellite called “Cheollian 2B” into the earth’s orbit. This is the first satellite of a triple network that will eventually cover Asia, North America, and Europe. This satellite was launched into Earth orbit on February 18, 2020, by the “Ariane 5” rocket of the “Arianespace” company from the “Guyana Space Center” in France.
A “Geostationary Environment Monitoring Spectrometer” (GEMS) is located on the Keolian 2B satellite. It is designed to improve early warning of hazardous pollution events across the Asia-Pacific region and to monitor long-term climate change.

During its 10-year mission, the Geostationary Environmental Monitoring Spectrometer will monitor the concentration of chemicals such as nitrogen dioxide, sulfur dioxide, formaldehyde, ozone, and other airborne particles. It is expected that this device will identify the source of PM2.5 fine particles flowing into South Korea for the first time by observing fine particles and dust in East Asia.

A new material that absorbs pollution precursor gases

“South Korea Institute of Civil Engineering and Construction Technology” (KICT) has made significant progress in responding to this major air pollution problem. The researchers of this institute have designed an innovative material that is designed to absorb nitrogen oxide and sulfur dioxide gases. These two substances are vital precursors for fine dust.

This new material works efficiently at room temperature, offering an energy-efficient alternative to traditional methods that require high energy and temperature.

The core of this innovation lies in a ceramic nanocomposite material made of sodium manganese oxides. This material uses a dual absorption and oxidation mechanism and effectively converts nitrogen oxide and sulfur dioxide gases into less harmful sulfate and nitrite ions.

One of the significant advantages of this material is its renewability, which allows recycling and repeated use through simple chemical methods.

Dr. Jiyeol Bae, the head of this research group, highlighted the importance of this development and said: With the development of these new nanomaterials, it is now possible to implement a system that can reduce the number of particulate matter precursors in urban environments with a cost-effective method. All these efforts help the public to enjoy clean and healthy air.

Despite this promising progress, there are challenges facing researchers, including production scalability, cost considerations for widespread application, and integration with current pollution control infrastructure. These challenges are critical to moving beyond laboratory success to real-world practical application.


A device that produces endless energy from soil




A device that produces endless energy from soil

A new fuel cell harnesses energy from soil-dwelling microbes to power sensors, harvesting nearly unlimited energy from the soil. In this article we will talk about a device that produces endless energy from soil.

A device that produces endless energy from soil

A team from Northwestern University has demonstrated a new way to generate electricity. They introduced a device the size of a book that sits on top of the soil and collects the force generated by microbes breaking down the soil (as long as there is carbon in the soil).

According to New Atlas, microbial fuel cells, as their name suggests, have been around for over 100 years. They work a bit like a battery, with an anode, cathode, and electrolyte, but instead of taking electricity from a chemical source, they work with bacteria that naturally donate electrons to nearby conductors.

This newly invented fuel cell relies on the ubiquitous natural microbes in the soil to generate energy.

Powered by soil, this device is a viable alternative to batteries in underground sensors used for precision agriculture.

A microbial fuel cell (MFC) or biological fuel cell is a biochemical system that produces electric current by mimicking the activity of bacteria that occurs in nature. A microbial fuel cell is a type of biochemical fuel cell system that generates electric current by diverting electrons produced from the microbial oxidation of reduced compounds (also known as fuel or electron donors) on the anode to oxidizing compounds (known as oxidizing agents or also known as electron acceptor) on the cathode through an external electrical circuit.

Fuel cells can be divided into two general categories “mediated and non-mediated”. The first fuel cells, introduced in the early 20th century, used a mediator, a chemical substance that transfers electrons from the bacteria in the cell to the anode. Non-intermediate fuel cells emerged in the 1970s. In this type of fuel cell, bacteria usually have electrochemically active proteins such as cytochromes on their outer membrane that can transfer electrons directly to the anode.

Read More: What if all the fish in the ocean disappeared?

Northwestern University researchers note the durability of their powerful fuel cell and have shown its ability to withstand various environmental conditions, including dry soil and flood-prone areas.

The issue so far has been to supply them with water and oxygen while they are buried in the soil. Although these devices have existed as a concept for more than a century, their uncertain performance and low power output have hampered efforts to put them into practice, especially in low-power conditions, says Northwestern University graduate student Bill Yen, who led the project. The humidity had stopped.

So the team set out to create several new designs aimed at providing cells with continuous access to oxygen and water and succeeded with a cartridge-shaped design that sits vertically on a horizontal disk.

A disk-shaped carbon-felt anode sits horizontally at the bottom of the device and goes deep into the soil, where it can capture electrons as microbes break down the soil.

Meanwhile, the conductive metal cathode is placed vertically above the anode. So the lower part goes deep enough to access the deep soil moisture, while the upper part is flush with the ground and a fresh air gap runs the entire length of the electrode, and a protective cap on top prevents soil from falling and It becomes waste and cuts off the cathode’s access to oxygen. Part of the cathode is also covered with a water-insulating material so that when water is present, a hydrophobic part of the cathode is still in contact with oxygen for the fuel cell to work.

The researchers used a waterproof material on the surface of the cathode, which allows it to work even during flooding and ensures gradual drying after immersion in water.

“These microbes are everywhere,” says George Wells, lead author of the study. They live in the soil everywhere now and we can use very simple engineered systems to get electricity from them. We’re not going to power entire cities with this energy, but we can capture very small amounts of energy to fuel essential, low-consumption applications.

Also, chemicals left over from batteries can potentially seep into the soil. This new technology is an environmentally friendly alternative that reduces environmental concerns associated with hazardous battery components and is also non-combustible.
The design performed consistently well in tests at varying levels of soil moisture, from completely waterlogged to relatively dry, and produced, on average, about 68 times more energy than its sensors needed to operate. It was also strong enough to survive extreme changes in soil moisture.

As with other sources of long-term electricity generation, such as diamond beta-voltaic batteries made from nuclear waste, the amount of electricity produced here is not enough to start a car or power a smartphone, but rather to power small sensors that can be used for long periods. work for a long time without needing to replace the battery regularly.

In addition, the researchers attached the soil sensor to a small antenna to enable wireless communication. This allowed the fuel cell to transmit data to a nearby station by reflecting existing radio frequency signals.

It is noteworthy that this soil fuel cell has a 120% better performance than similar technology.
Bill Yen says: “If we imagine a future with trillions of devices, we can’t make them all out of lithium, heavy metals, and toxins that are dangerous to the environment.” We need to find alternatives that can provide small amounts of energy to power a decentralized network of devices. In our search for a solution, we turned to soil microbial fuel cells, which use special microbes to break down soil and use that small amount of energy. As long as there is organic carbon in the soil for microbes to break down, our fuel cells can potentially survive.

Therefore, sensors like these can be very useful for farmers looking to monitor various soil elements including moisture, nutrients, pollutants, etc., and to use a technology-based precision agriculture approach. So if you put several of these devices around your farm, they can generate data for you for years, maybe even decades.

It should be mentioned that according to the research team, all the components of this device can be purchased from hardware stores. Therefore, there is no problem in the supply chain or materials for the widespread commercialization of this product.

This research was published in the ACM Journal on Interactive, Mobile, Wearable, and Ubiquitous Technologies.​

Continue Reading


What if all the fish in the ocean disappeared?




What if all the fish in the ocean disappeared?

Earth’s vast oceans cover most of our planet’s surface and are teeming with life, hosting an amazing variety of plants, microbes, worms, corals, crabs and fish, whales, and more. So what if all the fish in the ocean disappeared?

What if all the fish in the ocean disappeared?

The ocean is full of fish so they account for the second largest amount of carbon (the stuff that makes up living things) in the entire animal kingdom. They are right behind the group of insects and crustaceans. So what if all the fish in the ocean disappeared?

Most people only interact with the ocean from a beach or a boat, so it’s difficult to estimate how many fish there are across the oceans, but the oceans are teeming with fish from the surface to their depths, says SA.

These fish exist in different types and sizes. From the tiny sardines, guppies, and blennies you might see in coral reefs to the tuna and whale sharks you find in the open ocean.

These fish play a variety of roles in their ecosystem that support the lives of other creatures around them, and if they were to disappear one day, the ocean would look very different.

This article was written by Corey Evans, a scientist at Rice University who studies fish, their diversity, and all the ways they contribute to ocean environments.

Fish as food

Fishes play an important role in ocean ecosystems as both predators and prey. Thousands of species across ocean and terrestrial ecosystems, including humans, rely on fish for food.

In coral reef ecosystems, small fish are eaten by larger fish and other marine animals. This means that small fish form the base of the food web. They provide energy for larger fish and other organisms.

In the aquatic world, many birds, mammals, and reptiles eat fish and rely on them as an essential source of protein.

Even land plants can benefit from the presence of fish. On the West Coast of the United States, salmon returning to small rivers after spending several years at sea act as a conveyor belt of nutrients.

Salmon not only feed the animals that catch them, such as bears but also provide nutrients to the plants that line the rivers.

Studies have shown that some plants get up to 70% of their nitrogen from salmon that die on or near river banks.

Humans also depend on fish as a food source. Fish and other seafood are an important source of protein for nearly three billion people on Earth. The human population around the world has been eating fish for thousands of years.

Read More: How does nanobubble technology help to save lakes?

Conservation of habitats by fish

Fish do more than just feed. Because fish themselves forage, they can create and maintain important habitats for other organisms. In coral reef ecosystems, herbivorous fish control the growth of algae by continuously feeding on them.

Without the help of these herbivorous fish, the algae would grow rapidly and suffocate the coral, effectively destroying it.

One of the types of herbivorous fish is the parrot fish, which feeds directly on corals. At first, this may seem bad for corals, but parrotfish feeding on them can actually increase the growth rate of a coral colony.

In addition, parrotfish excrement is especially nutritious for corals. Parrotfish poop also forms part of the beautiful white sand beaches you may have enjoyed on family vacations.

Other fish also create habitats for other animals and affect their environment by stirring up the sand as they feed. By moving the sand around, they expose small creatures hidden in the sand that other animals can eat.

Despite the fact that many types of fish are confined to the ocean, their presence can be felt in many habitats. They can directly and indirectly affect the lives of organisms that depend on them for food and shelter.

So if it weren’t for fish, the earth would gradually lose its beautiful white sand beaches, coral reef ecosystems would become overrun with algae, many people would run out of food to eat, and we would lose some of the most fascinating creatures on our beautiful planet.

Continue Reading


How does nanobubble technology help to save lakes?




nanobubble technology help to save lakes

How does nanobubble technology help to save lakes? Nanobubble technology can have positive environmental effects. One of the applications of this technology is to aerate lakes with nanobubbles and help save lakes and remove algae from them.

How does nanobubble technology help to save lakes?

The sediment layer in lakes contains organic and mineral substances that have accumulated on the bottom of the lake over time. These sediments can be obtained from various sources, including eroded soil, runoff from nearby lands, and decaying plant and animal matter. Over time, these materials can accumulate on the bottom of the lake and form a layer of sediment that can be several meters thick in some lakes.

This sedimentary layer can have important consequences for the health and ecology of the lake. This layer can provide an important habitat for deep-sea organisms such as worms, snail larvae, and insects and be useful as a food source for aquatic plants and other organisms. However, this same sediment layer may act as a reservoir for contaminants such as heavy metals and organic pollutants, which can accumulate over time and potentially harm aquatic life and human health. Under certain conditions, the sediment layer at the bottom of the lake can be resuspended, negatively affecting the health of the lake and causing the death of aquatic life. The reduction of dissolved oxygen in the sedimentary layer leads to unhealthy lakes and makes these layers susceptible to problems such as mud, algae, foul odors, and disturbing insects.

Factors affecting the sediment layer of lakes

Studying the sediment layer in lakes can provide valuable information about the history of the lake and its surroundings, as well as information about the current and future health of the lake. Sediment cores can be collected from the lake bottom and analyzed to determine composition, age, and potential contaminants in the sediment layer. This information can help management decisions aimed at protecting and preserving the lake and its ecosystem.

The health of the sedimentary layer of the lake can be affected by various factors:

Input of nutrients: The amount and type of nutrients input to the lake can affect the quality and composition of the sediment layer. Excessive intake of nutrients, especially nitrogen and phosphorus, can lead to increased growth of algae and deposition of organic matter, which changes the sediment layer and affects its health.

Water chemistry: pH, temperature, and dissolved oxygen level of water can also affect the health of the sediment layer. Changes in water chemistry can affect the microbial communities that live in the sediment layer, which in turn can affect the composition and health of the sediment layer.

Sediment formation speed: The speed of sediment accumulation on the bottom of the lake can also affect the health of the sediment layer. Rapid sedimentation can bury and suffocate benthic organisms, while slowly forming sediments can lead to organic matter accumulation and anoxic conditions in the sediment layer. Benthic organisms are organisms that live on or in the sediments of the lake bottom and play an important role in the lake ecosystem by recycling nutrients, providing food for other organisms, and maintaining the health and function of the sediment layer.

Surrounding land use: Land use in the watershed around the lake can affect the quality and composition of the sediment layer. Land use practices that increase erosion, such as agriculture or deforestation, can lead to increased sediment input to a lake, which can alter the sediment layer and negatively affect its health.

Pollutants: The presence of pollutants such as heavy metals, pesticides, and polychlorinated biphenyls (PCB) can affect the health of the sediment layer. Contaminants can accumulate in the sediment layer and potentially harm benthic organisms and other aquatic life.

Overall, the health of a lake’s sediment layer is affected by a complex set of factors that interact with each other in ways that are difficult to predict. Understanding the factors that affect sediment health can help make management decisions aimed at protecting the lake and its ecosystem.

Read More: Microplastic storms are coming

Ensuring a healthy sediment layer with dissolved oxygen

Getting dissolved oxygen into the sediment layer of the lake is very important because it supports the growth and survival of benthic organisms and other aquatic life that live in the sediment layer.

Oxygen is essential for the respiration of benthic organisms, allowing them to break down organic matter and return nutrients to the water. Without sufficient oxygen, the sediment layer becomes anoxic or hypoxic, meaning that the concentration of dissolved oxygen in the sediment is low or absent. This leads to the accumulation of toxic compounds such as hydrogen sulfide (H2S) and changes in the microbial communities that live in the sediment layer.

Therefore, introducing oxygen into the sediment layer of a lake is important to maintain a healthy ecosystem and promote the growth and survival of benthic and other aquatic organisms. Management strategies aimed at improving oxygen levels in the sediment layer may include reducing nutrient input, injecting nanobubbles, and helping the growth of submerged aquatic vegetation.

nanobubble technology help to save lakes

Before (left image) and after (right image) the use of nanobubble technology in a lake

Using nanobubble technology to effectively deliver dissolved oxygen to the sediment layer

Nanobubble technology can be used to deliver more dissolved oxygen to the sediment layer of the lake by producing and delivering very small bubbles of oxygen into the water. These bubbles are so small that they are neutrally buoyant and remain suspended in the water for long periods, allowing oxygen to diffuse into the sediment layer.

Common aeration systems, such as mechanical aerators, create large bubbles that quickly rise to the surface of the water and release oxygen into the atmosphere. While these traditional systems can improve oxygen levels in water in some cases, they do not effectively reach the sediment layer, where oxygen is often limited. Nanobubble technology has in some cases achieved oxygen transfer efficiency (OTE) of up to 85%, while many conventional closed aeration systems have only 40-1% OTE.

By introducing more oxygen into the sediment layer using nanobubble technology, the microbial communities living within the sediment can grow and cause organic matter decomposition and nutrient cycling. This helps to improve water quality and clarity and promotes a healthy ecosystem in the lake. Additionally, promoting a healthy sediment layer can help reduce algal impacts and improve habitat for benthic and other aquatic life.

According to the Nano Headquarters, there are currently companies in Iran that produce and market equipment related to nanobubbles.

Continue Reading