Connect with us

Space

Why was Pluto removed from the list of planets in the solar system?

Published

on

Pluto
More than 17 years have passed since the demotion of Pluto from a planet to a dwarf planet, But experts and the public still debate Pluto’s status and planet definition.

Why was Pluto removed from the list of planets in the solar system?

Our understanding of the solar system changed forever on August 24, 2006. At that time, the International Astronomical Union (IAU) researchers agreed to reclassify Pluto, changing the status of this object from a planet to a dwarf planet. This decision provoked a lot of anger and caused the textbooks to be rewritten. The demotion of the former ninth planet of the solar system is still controversial after more than 17 years.

Currently, the discussion about Pluto shows the problems in defining the concept of “planet”. The International Astronomical Union defines a planet as a celestial body that orbits the Sun with a nearly spherical appearance and, in most cases, clears the vicinity of its orbit of debris from other bodies. However, this set of criteria has not been universally agreed upon.

Earth and even Jupiter, despite their large size, have not cleared many asteroids from their orbital regions. In addition, there are small worlds such as Ceres that are spherical and revolve around the Sun, and are not considered planets.

Table of Contents
  • After all, what is a planet?
  • A planetary puzzle
  • NASA’s New Horizons mission and the debate over the planet again
  • Can Pluto become a planet again?
  • What is the significance of Pluto being a planet?

Pluto’s demotion raises larger issues about how to define everybody in the solar system, or even space more generally. This incident shows that science sometimes cannot divide objects into easy categories; Because if the definition of planet is expanded again, it is not clear how we should evaluate the numerous non-spherical bodies that orbit the Sun. Decisions about this may even call into question the asteroid belt (the huge band of small objects between Mars and Jupiter). Or what happens if a planet somehow breaks into pieces?

The discussion about Pluto shows the problems in defining the concept of “planet”.

Meanwhile, while the Pluto debate began almost 20 years ago, many still don’t fully understand all the controversy and why Pluto lost its planetary status. But the change in the number of planets in the solar system from nine to eight (at least according to the standard IAU definition) was long in the making and highlighted one of science’s greatest strengths: the ability to change seemingly fixed definitions in light of new evidence.

After all, what is a planet?

The word planet in English (Planet) goes back to ancient times and is derived from the Greek word Planetes meaning “wandering star”. The five classical planets—Mercury, Venus, Mars, Jupiter, and Saturn—are visible to the naked eye and move in strange paths across the sky compared to the much more distant background stars.

After the advent of telescopes, astronomers discovered two new planets, Uranus and Neptune. These two distant worlds are very dim and cannot be seen with the naked eye. It should be kept in mind that the discussed definition of a planet follows the Greek-Roman tradition and the definitions of the International Astronomical Union are based on it. In ancient times, the planets were observed with the naked eye all over the world and had different names in each culture.

When astronomers discovered Ceres in the asteroid belt in 1801, it was classified as a “planet” by the scientific community at the time. But the situation began to change; Because further measurements showed that Ceres is smaller than any other planet seen so far. This mass then entered a group of rocky bodies called “asteroids”, of which we now know hundreds of thousands of examples in the asteroid belt alone. Today, Ceres is known as a dwarf planet.

Comparing the size of Earth and Moon with Pluto and CharonSize comparison of Pluto and its moon Charon (bottom right) with the Moon and Earth.

Pluto was discovered and classified as a planet in 1930 (11 years after the founding of the International Astronomical Union). At the time, Clyde Tamba of the Lowell Observatory in Arizona compared photographic plates of the sky on separate nights and noticed a small dot moving back and forth across the starscape. However, the latest candidate for the ninth planet of the solar system was immediately considered a strange object. Pluto’s orbit is so elliptical, or eccentric, that it brings the object closer to the Sun than Neptune in 20 years of its 248-year journey. Pluto’s orbit is also tilted relative to the ecliptic, or the plane on which the other planets in the solar system rotate.

If Pluto is a planet, then is Eris also a planet?

In 1992, scientists discovered the first Kuiper Belt object named 1992 QB1. This small body orbits the Sun in the vicinity of Pluto and beyond the orbit of Neptune. Soon many similar objects were discovered, and a belt of small, icy worlds similar to the asteroid belt between Mars and Jupiter was revealed. Pluto remained king of this region until, in July 2005, astronomers discovered the distant object Eris, which was initially thought to be larger than Pluto.

A planetary puzzle

After the discovery of Eris, researchers had to ask themselves these questions: If Pluto is a planet, then is Eris also considered a planet? What about all those other icy bodies in the Kuiper Belt or smaller bodies in the Asteroid Belt? Where exactly is the dividing line for classifying an object as a planet? A word that once seemed straightforward and simple suddenly became strangely complicated.

Then intense debates ensued and new proposals were made to define the planet. Brian Marsden, a member of the IAU executive committee responsible for finding a new meaning for the planet, told Space.com in 2005: “Every time we think some of us are reaching a consensus, then someone says something and shows that it’s clear.” It’s not like that.”

A year later, astronomers were still nowhere near a solution, and the dilemma hung over the IAU General Assembly in Prague in 2006 like a dark cloud. At this conference, the researchers had eight days of intensive discussion and presented four different proposals. A controversial proposal would have brought the total number of planets in the solar system to 12 by adding Ceres, the largest asteroid, and Pluto’s moon, Charon.

Michael Brown, an astronomer at Caltech University and discoverer of Eris, called the proposal “complete confusion.”

Planets and dwarf planets of the solar systemThe globular objects in the Kuiper Belt (right arrows) and Ceres (left arrow) are now called dwarf planets.

Near the end of the conference, the remaining 424 astronomers voted to create three new classifications for objects in the solar system. From then on, only Mercury and Neptune and the large worlds in between were considered planets. Then Pluto and its counterparts (round bodies that shared their orbits with other bodies) were called dwarf planets. All other objects that orbit the Sun are known as minor solar system bodies.

NASA’s New Horizons mission and the debate over the planet again

A group of experts did not take the decision of their colleagues seriously. Alan Stern, the senior researcher of NASA’s New Horizons spacecraft, which passed by Pluto in 2015, regretted the demotion of the former ninth planet of the solar system and said that less than five percent of the world’s 10,000 astronomers participated in the International Astronomical Union vote.

New Horizons was considered an important turning point in the planetary debate. The spacecraft’s quick flyby of Pluto revealed a world far more dynamic than anyone imagined. Large mountains, impact craters, and signs of liquid nitrogen flowing on the surface all suggest a world that has undergone significant geological changes since its formation. People like Stern have argued that Pluto should be considered a planet on that basis alone.

New Horizons was considered an important turning point in the planetary debate

Images taken from Pluto’s moon Charon also show a very dynamic place; Including the red cap on its pole, which apparently changes its appearance with the slow seasonal change in the solar system. Most importantly, Pluto has several moons; While Mercury and Venus, the two inner planets of the solar system, do not have even one moon. Many asteroids and dwarf planets also have moons, complicating the definition of a planet.

An artist's rendering of the New Horizons spacecraft over PlutoNew Horizons is the only spacecraft that has ever had a close encounter with Pluto.

Many people share views with Stern and other like-minded experts. In 2014, shortly before New Horizons flew past Pluto, experts at the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts, debated different definitions of the planet. Owen Gingerich, a science historian who chairs the IAU’s Planet Definition Committee, stated that “planet is a culturally defined term that changes over time.” But most of the audience watching the CfA debate chose a different definition that would have put Pluto back among the planets.

Alternative classification schemes continue to be proposed. A 2017 proposal defined a planet as “a spherical body in space that is smaller than a star.” This definition makes Pluto a planet again; But it does the same with Earth’s moon, as well as many other moons in the solar system, bringing the total number of officially recognized planets to 110. A year later, Stern wrote an op-ed in The Washington Post with David Greenspoon, senior scientist at the Planetary Science Association, arguing that the International Astronomical Union’s definition was hastily adopted and problematic and that astronomers should rethink their ideas.

Can Pluto become a planet again?

Numerous requests from experts have so far been ignored, and the International Astronomical Union is unlikely to address the dispute anytime soon. “The simple fact is that Pluto was misclassified at the time of discovery,” wrote American astrophysicist Ethan Siegel in response to Stern and Greenspoon. “This crime has never been in the same position as the other eight worlds.”

Michael Brown also says: “As a result, Pluto is still not a planet, and in fact it never was.” We just got it wrong for 50 years and now we know better. Missing Pluto is not really a very good argument. “The reality is something else and we have to deal with it.”

What is the significance of Pluto being a planet?

The Sun and the planets of the solar system opposite Pluto

These days, children who weren’t even born when Pluto was a planet, ask what the definition of a planet even matters. Why do we have to discuss whether Pluto is a planet or not? Astronomers say there’s no simple answer, and we may have to look beyond our own solar system to understand what makes an object a planet or not.

More than five thousand exoplanets or worlds beyond the solar system have been discovered so far. This vast collection ranges from Earth-sized “super-Earths” to Uranus and “hot Jupiters” orbiting their star closely, to a range of worlds of other sizes. The types of planetary environments that must be considered are changing rapidly.

It seems unlikely that the International Astronomical Union will address the Pluto controversy anytime soon

What the increasing knowledge of the types of exoplanets shows us is that each star system may have its own unique environment. Although it can be more generally stated that stars can form planets from the collapse of gas and dust in their environment, the unique dynamics that control the process of planet formation are much more complex. For example, are multiple stars involved in this process? How much dust is there? Is there a black hole or supernova that will destroy the precious dust and gas needed to grow planets?

Even if planets are lucky enough to grow large, how they interact with other planets early in their formation is poorly understood. The worlds interact with each other, and the mutual gravitational effect between them causes the planets to move away from their parent star, close to it, or in some cases, fall out of the system altogether.

What all these explanations suggest is that our definition of a planet should probably be more contextual to account for the number of possible scenarios for the formation of worlds. Perhaps the planets depend on a specific formation condition or specific regions. All we seem to know for sure is that as more and more data is collected, the planet definition and the debate that Pluto has sparked will continue for some time to come.

Space

Why is it still difficult to land on the moon?

Published

on

By

moon
More than half a century after the first spacecraft to reach the moon, a successful landing on Earth’s only moon remains a challenge for space agencies and private companies.

Why is it still difficult to land on the moon?

This year, the private company Spacel and the Indian Space Organization both met tragic ends when they tried to land their spacecraft on the surface of the moon. Despite the astonishing leaps made in recent decades in computing, artificial intelligence and other technologies, it seems that landing on the moon should be easier now; But recent setbacks show that we still have a long way to go with safe and trouble-free landings on the surface of Earth’s only moon.

50 years after sending the first man to the surface of the moon, the question arises as to why safely landing a spacecraft on Earth’s nearest cosmic neighbor is still a difficult task for space agencies and private space companies. Stay with Zoomit to check the answer to this question.

Why is the lunar landing associated with 15 minutes of fear?

Despite the complexities of any space mission, sending an object from Earth into orbit around the moon today is easy. Christopher Riley, the director of the documentary film In the Shadow of the Moon produced in 2007 and the author of the book Where We Stood (2019), both of which are about the history of the Apollo 11 mission, explained the reasons for the difficulty of landing on the moon in an interview with Digital Trends. is According to him: “Today, the paths between the Earth and the Moon are well known, and it is easy to predict them and fly inside them.”

Chandrayaan-2
Chandrayaan 2 mission launch

However, the real challenge is getting the spacecraft out of orbit and landing it on the lunar surface; Because there is a delay in the communication between the Earth and the Moon, and the people in the control room who are present on the Earth cannot manually control the spacecraft in order to land it safely on the Moon. As a result, the spacecraft must descend automatically, and to do so, it will fire its descent engines to slow its speed from thousands of kilometers per hour to about one meter per second, in order to make a safe landing on the lunar surface.

For this reason, the director of the Indian Space Research Organization (ISRO), who was trying to land the Vikram lander last month, described the final descent of the spacecraft as “frightening 15 minutes”; Because as soon as the spacecraft enters the landing stage, the control of its status is out of the hands of the mission control members. They can only watch the spacecraft land and hope that everything goes according to plan, that hundreds of commands are executed correctly, and that the automatic landing systems gently bring the spacecraft closer to the surface of the moon.

The Great Unknown: The Landing Surface

One of the biggest challenges in the final descent phase is identifying the type of landing site. Despite the availability of instruments such as the Lunar Reconnaissance Orbiter (LRO) that can capture amazing views of the lunar surface, it is still difficult to know what kind of surface the spacecraft will encounter when it lands on the moon.

Beresheet crash site
Left: Breshit crash site. Right: The ratio of the before and after images highlights the occurrence of minor changes in surface brightness.

Leonard David, author of Moon Fever: The New Space Race (2019) and veteran space reporter, says:

The Lunar Reconnaissance Orbiter is a very valuable asset that has performed really well over the years; But when you get a few meters above the surface of the moon, complications appear that cannot be seen even with the very powerful LRO camera.

Even today, despite the imaging data available, “some landing sites still have unknown remains,” Riley says. He notes that the Apollo 11 mission included an advantage that today’s unmanned landers lack, which is the presence of an astronaut’s observer’s eyes that can closely observe the surface of the spacecraft’s landing site. As you probably know, in the mission that led to the landing of the first man on the surface of the moon, the Eagle computer was guiding the spacecraft to a place full of boulders; But to avoid hitting the rocky surface of the moon, Armstrong took control of the spacecraft himself and landed it on a flat surface.

Apollo 11 / Apollo 11

The uneven surface of the landing site had caused many problems in previous lunar missions such as Apollo 15. In this mission, the astronauts were told that as soon as the spacecraft touched the surface of the moon, they should turn off the engines to prevent dust from being sucked in and the risk of a return explosion. But the Apollo 15 spacecraft landed in a crater, and because of this, one of its legs came into contact with the surface earlier than the others. When the crew shut down the engines, the spacecraft, moving at a speed of 1.2 meters per second, experienced a hard landing. The lander landed at an oblique angle, and although it eventually landed safely, it nearly overturned, causing a fatal disaster.

  • Half a century after Apollo 11; How did the great human leap happen?
  • dust storms; The nightmare of space missions to the moon

The difficult landing of Apollo 15 introduced another complicating factor in lunar landings: lunar dust. The Earth’s moon is covered with dust that is thrown into the air by any movement and sticks to everything it comes in contact with. As the spacecraft approaches the surface of the moon, huge plumes of dust are kicked up that limit the field of view and endanger the spacecraft’s electronics and other systems. We still do not have a solution to deal with the dust problem.

An achievement that has been achieved before

Another reason why the moon landing remains a challenge is that gaining public support for lunar projects seems difficult. Referring to Neil Armstrong and Buzz Aldrin, the two astronauts who walked on the moon during the Apollo 11 mission, David says, “We convinced ourselves that we had sent Neil and Buzz [to the surface of the moon]; “As a result, when it comes to lunar missions, people may say we’ve been there before and we’ve had this success.”

Apollo 11 / Apollo 11

But in reality, our understanding of the moon is still very little, especially in relation to long-term missions. Now, with a 50-year gap between the Apollo missions and NASA’s upcoming Artemis project, the knowledge gained has been lost as engineers and specialists retire. David says:

We need to recover our ability to travel into deep space. We haven’t gone beyond near-Earth orbit since Apollo 17 and since 1972. NASA is no longer the same organization that put men on the moon, and there is a whole new generation of mission operators.

The importance of redundancy

As the first private spacecraft entered into orbit around the moon, the Space project was of considerable importance; But its failure to land smoothly on the surface of the moon made the achievement of landing on the surface of the moon still remain in the hands of governments. However, we can expect more private companies, such as Jeff Bezos ‘ Blue Origin, which is developing its lunar lander, to target the moon in the future. According to Elon Musk, even the giant SpaceX Starship spacecraft, which is being built with the ultimate goal of sending a human mission to Mars , can also land on the moon.

According to David, private companies’ participation in lunar landings has advantages such as increased innovation. However, companies are under pressure to save money, and this can lead to a lack of redundancy and support systems that are essential in the event of errors and malfunctions. Lunar rovers typically include two or even three layers of support systems. David is concerned that private companies will be encouraged to eliminate these redundancies in order to cut costs and save money.

Crew Dragon
Crew Dragon SpaceX passenger capsule

“We saw Elon Musk’s Dragon capsule catch fire after a failed test on the stand,” says David, referring to the explosion of the SpaceX spacecraft in April, which had no crew on board. “This accident was kind of a wake-up call about how unpredictable the performance of spacecraft can be.” David compared the Crew Dragon incident to the Apollo 1 disaster, which killed three NASA astronauts during a test launch in 1967.

Another problem related to the lack of redundancy systems is the lack of information needed when an error occurs. As for the recent landings, it seems that the SpaceX crash was caused by human error; however, it is not clear what caused the failure of Chandrayaan 2 in the calm landing, and it is possible that without the necessary systems to record and send information to the lander, we will never find out the main reason for the failure of this mission. Without the required data, it becomes much more difficult to prevent problems from reoccurring in the future.

The future of lunar landings

Currently, many projects are underway to facilitate future moon landings. Ultimately, we need to be able to build the necessary infrastructure for a long-term stay on the moon.

Moonrise Project
Conceptual design of Moonrise technology on the moon. On the left side is the Alina lunar module, and on the right side, the lunar rover equipped with Moonrise technology melts the lunar soil with the help of a laser.

If we can make long-term stays on the moon possible, or even build a permanent base there, landing spacecraft on the lunar surface will be much easier. By constructing the landing sites, a flat, safe, and free surface of unknown debris can be created for the landing of surface occupants. For example, researchers are currently conducting research at NASA’s Kennedy Space Center to investigate the feasibility of using microwaves to melt the lunar soil (regolith) and turn it into a hard foundation so that it can be used as a landing and launch site. The European Space Agency is also investigating how to use 3D printing to create landing sites and other infrastructure on the moon.

Read more: Europa Clipper, NASA’s flagship probe was launched

Other ideas include the use of lidar remote sensing systems, which are similar to radar systems; But instead of radio waves, it uses lasers to land the spacecraft. Lidar technology provides more accurate readings and uses a network of GPS satellites to help guide the spacecraft during landing.

The problem of public support

As important as technology is, public interest and support are essential to the success of the lunar landing program. “Apollo had enormous resources that are perhaps only comparable today to China’s space program,” says Riley. “Remember that Apollo carried the best computer imaginable, the human brain.” It goes without saying that there is an element of luck involved in every landing.

Mike Pence
US Vice President Mike Pence speaking at the 50th anniversary of the Apollo 11 mission

Finally, there is the question of what kind of failure is acceptable for people. David says:

I think we have to be serious about the fact that we’re probably going to lose people. There is a serious possibility that the manned lunar lander will crash and kill the astronauts inside. The American people continued to support NASA despite the failures and bad luck of the Apollo program, But at that time there was a lot of pressure to compete with the Soviet Union. Without the bipolar atmosphere of the Cold War and the space race, would people still support missions with human lives in between?

Continue Reading

Space

Europa Clipper, NASA’s flagship probe was launched

Published

on

By

Europa Clipper
The highly anticipated Europa Clipper probe has finally begun its long journey to uncover the mysteries of Europa, Jupiter’s moon, by launching aboard a SpaceX Falcon Heavy rocket.

Europa Clipper, NASA’s flagship probe was launched

After years of waiting, NASA’s Europa Clipper probe was finally launched on Monday at 7:36 p.m. Iran time from the Kennedy Space Center on top of SpaceX’s Falcon Heavy rocket and began a major astrobiology mission to Europa, the potentially habitable moon of Jupiter.

As SpaceX’s massive rocket powered by 27 powerful Merlin engines lifted off from pad 39A, NASA live broadcast reporter Dron Neal said, “The launch of Falcon Heavy with Europa Clipper will reveal the secrets of the vast ocean beneath the icy crust of Europa, Jupiter’s moon. It has been hidden, it will reveal.”

The engines of the two side boosters of the Falcon Heavy were shut down and separated from the central booster approximately three minutes after the flight. The central booster continued to fly for another minute, and then in the fourth minute of the launch, the separation of the upper stage from the first stage was confirmed. Finally, 58 minutes later, Europa Clipper was injected into interplanetary orbit as scheduled. A few minutes later, the mission team made contact with the probe, and people in the control room cheered and applauded.

Falcon Heavy’s unique launch

The launch of NASA’s new probe was delayed due to some mishaps. NASA and SpaceX initially planned to launch the Europa Clipper mission on Thursday, October 10; But with powerful Hurricane Milton hitting Florida’s Gulf Coast on Wednesday evening, a delay in the launch became inevitable. NASA shut down Kennedy Space Center to deal with the storm, and Europa Clipper was placed inside SpaceX’s hangar near Launch Pad 39A.

The recent launch was Falcon Heavy’s 11th flight overall and its second interplanetary mission. Also, this was the first flight of the Falcon Heavy, when all three boosters of the first stage of the rocket were deployed.

Typically, the Falcon Heavy and Falcon 9 first-stage boosters store enough fuel to perform landing maneuvers for recovery and reuse in the future; But Europa Clipper needed all the power that Falcon Heavy could provide in order to make it on its way to the Jupiter system.

A long way to the launch pad

In late 2015, the US Congress directed NASA to launch Europa Clipper using the Space Launch System (SLS), NASA’s massive rocket. SLS was still under construction at the time and was several years away from reaching the launch pad. The delay in completing the construction of this powerful rocket and NASA’s need to assign at least the first three versions of SLS to the Artemis lunar mission caused the Europa Clipper launch date to be in an aura of uncertainty.

In the 2021 House budget draft for NASA, the agency was directed to launch Europa Clipper by 2025 and, if possible, with SLS. However, due to the unavailability of the Space Launch System, NASA had to go to SpaceX’s Falcon Heavy. This decision was not without cost. As the most powerful rocket ever used in an operational mission, SLS can send Europa Clipper directly to the Jupiter system in less than three years.

Europa Clipper will use the gravitational assistance of Mars and Earth on its way to the Jupiter system

Now, even in Falcon Heavy’s fully disposable mode, the Clipper’s trip to Europe takes almost twice as long. The probe should make a flyby of Mars in February 2025 and a flyby of Earth in December 2026 to gain enough speed to reach its destination in April 2030.

Missile problems were not the only obstacles facing Europa Clipper on its way to the launch pad. For example, the rising costs of this five billion dollar probe forced NASA to cancel the construction of one of the probe’s science instruments. This instrument, named “Identification of Europa’s internal features using a magnetometer” (ICEMAG), was designed to measure Europa’s magnetic field.

Then in May 2024, NASA found that transistors similar to those used in Europa Clipper, which are responsible for regulating the probe’s electricity, were “failing at lower-than-expected radiation doses.” Following this discovery, NASA conducted more tests on the transistors and finally concluded in late August that these components could support the initial mission in the radiation-rich environment around Jupiter.

Ambitious mission to a fascinating moon

Imaging from the Europa Clipper probe over Europa, Jupiter's oceanic moon

NASA/Jet Propulsion Laboratory-Caltech

Europa Clipper is one of NASA’s most exciting and ambitious flagship missions, and it has impressive features. For example, the mission probe is the largest spacecraft NASA has ever built for a planetary mission. Europa Clipper weighed almost 6,000 kg at the time of launch and will be more than 30 meters long (bigger than a basketball court) by opening its huge solar panels in space.

Clipper’s Europa destination is also a prominent location: Europa, one of Jupiter’s four Galilean moons. The moon is covered with an icy outer shell, which scientists believe hides a vast ocean of salty liquid water. For this reason, Europa is considered one of the best places in the solar system to support alien life.

In early 2012, studies began to look for potential plumes of water rising from Europa’s surface. Some researchers theorize that those water columns and vents from which the columns protrude may contain evidence of life living beneath the moon’s icy crust. However, NASA scientists have made it clear that Europa Clipper is not looking for extraterrestrial life in Europa; Rather, this probe will only investigate the potential of the submoon water environment to support life.

“If there’s life on Europa, it’s going to be under the ocean,” Bonnie Buratti, senior Europa Clipper scientist at NASA’s Jet Propulsion Laboratory, said in September. As a result, we cannot see it.” “We will be looking for organic chemicals that are prerequisites for life on the surface of the moon,” Borrati added. There are things we can observe; such as DNA or RNA; But we don’t expect to see them. As a result, [the probe] is only looking for habitable environments and evidence for the ingredients of life, rather than life itself.”

NASA scientists have made it clear that Europa Clipper is not looking for extraterrestrial life in Europa

Europa Clipper will collect data using a suite of nine scientific instruments, including visible and thermal cameras, several spectrometers, and special equipment to identify Europa’s magnetic environment. As stated on NASA’s Europa Clipper page, the probe will help scientists achieve three main goals:

  • Determining the thickness of Europa’s ice sheet and understanding how Europa’s ocean interacts with the lunar surface.
  • Investigating the composition of Europa’s ocean to determine whether it has the materials necessary to form and sustain life.
  • Studying the formation of Europe’s surface features and discovering signs of recent geological activities; such as the sliding of crustal plates or the discharge of water columns in space.

Europa Clipper also transports Earth’s culture to the Solar System. A piece called “In Praise of Mystery: A Poem for Europe” by Edda Lemon, a famous American poet, is engraved in the artist’s own handwriting on a metal plate. In addition, the probe carries a coin-sized chip that contains the names of 2.6 million inhabitants of planet Earth.

6-year journey

Illustration of Europe Clipper over Europe

Johns Hopkins University Applied Physics

If all goes according to plan, Europa Clipper will enter Jupiter’s orbit in April 2030. When the probe gets there, it will use up 50-60% of its 2,722 kg of fuel by performing an injection maneuver for 6-8 hours.

The injection maneuver puts Europa Clipper in an elliptical orbit around the gas giant. A series of long maneuvers will then be performed to align the trajectory so that the probe can fly by Europa more than 45 times and study it closely. In fact, Europa Clipper will remain around Jupiter throughout its mission; Because according to the launch environment of Europa, it will be very dangerous for the spacecraft to go around the moon.

If all goes according to plan, Europa Clipper will enter Jupiter’s orbit in April 2030

The first flight over Europe will not take place before the spring of 2031. NASA will use the first pass to make further corrections to Europa Clipper’s trajectory in preparation for the probe’s first science mission. With the start of scientific flybys in May 2031, Europa Clipper will aim its array of sensors towards the far hemisphere from Jupiter and will approach the surface of the moon up to 25 km. The second science campaign will begin two years later, in May 2033, in the Jupiter-facing hemisphere of Europa.

The end of the Europa Clipper mission is set for September 2034. At that time, NASA will crash the spacecraft into Ganymede, another Galilean moon of Jupiter. This disposal strategy was chosen because Ganymede is considered a relatively poor candidate to host life, and the mission team wanted to make sure they did not contaminate potentially life-hosting Europa with terrestrial microbes.

Continue Reading

Space

Dark matter and ordinary matter can interact without gravity!

Published

on

By

dark matter
Dark matter and ordinary matter can interact without gravity! Dark matter, which has five times the mass of normal matter, helps hold galaxies together and explains the puzzling motions of stars. Now a new study has shown that these two substances can interact with each other without the presence of gravity.

Dark matter and ordinary matter can interact without gravity!

Why is dark matter associated with the adjective “dark”? Is it because it harbors some evil forces of the universe or hidden secrets that scientists don’t want us to know? No, it is not. Such fanciful assumptions may sound appealing to a conspiracy theorist, but they are far from the truth.

Dark matter is called dark because it does not interact with light. So when dark matter and light collide, they pass each other. This is also why scientists have not been able to detect dark matter until now; it does not react to light.

Although it has mass and mass creates gravity, this means that dark matter can interact with normal matter and vice versa. Such interactions are rare, and gravity is the only known force that causes these two forms of matter to interact.

However, a new study suggests that dark matter and ordinary matter interact in ways other than gravity.

If this theory is correct, it shows that our existing models of dark matter are somewhat wrong. In addition, it can lead to the development of new and better tools for the detection of dark matter.

Read more: There is more than one way for planets to be born

A new missing link between dark and ordinary matter

Dark matter is believed to have about five times the mass of normal matter in our universe, which helps hold galaxies together and explains some of the motions of stars that don’t make sense based on the presence of visible matter alone.

For example, one of the strongest lines of evidence for the existence of dark matter is the observation of rotation curves in galaxies, which show that stars at the outer edges of spiral galaxies rotate at rates similar to those near the center. These observations indicate the presence of an invisible mass.

Also, for their study, the researchers studied six ultra-dim dwarf (UFD) galaxies located near the Milky Way. However, in terms of their mass, these galaxies have fewer stars than they should. This means they are mostly made up of dark matter.

According to the researchers, if dark matter and normal matter interact only through gravity, the stars in these UFDs should be denser in the centers and more spread out toward the edges of the galaxies. However, if they interact in other ways, the star distribution looks different.

The authors of the study ran computer simulations to investigate both possibilities. When they tested this for all six ultra-dim dwarf (UFD) galaxies, they found that the distribution of stars was uniform, meaning that the stars were spread evenly across the galaxies.

This was in contrast to what is generally observed for gravitational interactions between dark matter and normal matter.

What causes this interaction?

The results of the simulations showed that gravity is not the only force that can make dark matter and normal matter interact. Such an interaction has never been observed before, and it could change our understanding of dark matter and dark energy.

However, this study has a major limitation. What caused the interaction between the two forms of matter is still a mystery. While the current study provides tantalizing hints of a novel interaction, its exact nature and underlying causes remain unknown. Hopefully, further research will clarify the details of such interactions.

This study was published in The Astrophysical Journal Letters.

Continue Reading

Popular