Connect with us

Space

Pluto; Everything you need to know

Published

on

Pluto
Pluto is a dwarf planet and the largest mass in the Kuiper belt, which was once known as the ninth planet in the solar system; But later he lost this position.

Pluto; Everything you need to know

Pluto or Pluto is the largest known dwarf planet in the solar system, which used to be the ninth and outermost planet in the solar system. This strange world is located in the Kuiper Belt; A region beyond Neptune’s orbit with hundreds of thousands of rocky and icy bodies each more than 100 kilometers across, as well as a trillion or more comets.

Pluto was reclassified as a dwarf planet in 2006 and lost the title of ninth planet. The demotion of Pluto was a controversial event and provoked serious discussions in the scientific community and among people.

Table of Contents
  • How was Pluto discovered?
  • What does Pluto look like?
  • What is Pluto made of?
  • Orbital features of Pluto
  • Interesting facts about Pluto’s orbit
  • Why is Pluto no longer a planet?
  • Does Pluto have moons?
  • Journey to Pluto
  • Pictures of Pluto and its moons

How was Pluto discovered?

Percival Lowell, an American astronomer, first proposed the existence of Pluto in 1905 when he observed strange deviations in the orbits of Uranus and Neptune. Lowell thought there must be another object whose gravity was affecting the ice giants, causing them to misalign their orbits. Lowell predicted the position of the mysterious planet in 1915, But he died 15 years before its discovery. Finally, based on the predictions of Lowell and other astronomers, Clyde Tamba discovered Pluto in 1930 at the Lowell Observatory in Arizona.

Clyde Tamba discovered the dwarf planet Pluto
Clyde Tamba, discoverer of the dwarf planet Pluto.

Pluto was named by the suggestion of Venisha Burney , an 11-year-old child from England. With the news of the discovery of the ninth planet, Venisha suggested to her grandfather that the name of the god of the underworld in Roman mythology be placed on it. His grandfather then passed the suggested name on to the Lowell Observatory. Pluto is also considered to be a tribute to Percival Lowell because it contains the first two letters of Percival Lowell’s name.

What does Pluto look like?

Because Pluto is so far from Earth, little was known about the dwarf planet’s size or surface condition until 2015, when NASA’s New Horizons spacecraft flew past it. New Horizons showed that Pluto, with a diameter of 2,370 kilometers, is less than one-fifth the size of Earth and only about two-thirds the size of our planet’s moons.

New Horizons’ observations of Pluto’s surface revealed various surface features; Among the mountains whose height reaches 3500 meters and are comparable to the Rocky Mountains on Earth. Although frozen methane and nitrogen cover most of Pluto’s surface, these materials are not strong enough to support such high peaks; As a result, scientists believe that the mountains were formed on a bed of water ice.

The surface of Pluto as seen by the New Horizons spacecraftThe surface of Pluto was seen by NASA’s New Horizons spacecraft in July 2015.

Pluto’s surface is covered with an abundance of frozen methane, But New Horizons scientists have observed dramatic differences in the way light reflects off this icy surface across the surface of the dwarf planet. They have observed features similar to Earth’s ice sheets or erosion features in Pluto’s mountainous regions. These surface effects are much larger on Pluto; As it is estimated that their height is 500 meters; While the size of ground samples is only a few meters.

Another distinctive feature on Pluto’s surface is a large heart-shaped region known informally as the Tamba region. The left side of this area (the area that takes the shape of an ice cream cone) is covered with frozen carbon monoxide. Scientists have detected other changes in the composition of surface materials in the “heart” of Pluto.

At left center of the Tamba region is a very flat area that the New Horizons team has informally named the “Sputnik Plateau” in honor of Sputnik, the first artificial satellite to orbit Earth. This region of Pluto’s surface does not have craters caused by meteorite impact; A feature that shows that the Sputnik Plateau is geologically a very young region that is not more than a hundred million years old. It is possible that this area is still being formed and changed by geological processes.

Pluto’s ice plains show dark streaks several kilometers long that lineup. It is possible that these lines were formed by strong winds that blow on the surface of the dwarf planet. The Hubble Space Telescope has also obtained evidence that Pluto’s crust could contain complex organic molecules.

Pluto’s surface is one of the coldest places in the solar system. The temperature there can drop to minus 226 to minus 240 degrees Celsius. Comparing images taken of Pluto at different times showed that the dwarf planet appears to have become redder over time, possibly due to seasonal changes.

Pluto may have a subsurface ocean now or may have had one in the past. However, there is still no consensus on this. If an ocean had already formed under the surface of Pluto, it could have greatly influenced the history of this dwarf planet. For example, scientists believe that the Sputnik Plateau region grew so heavy over time as the ice mass increased that it overturned Pluto and brought its axial tilt to its present size (about 120 degrees). According to researchers, the subsurface ocean is the best explanation for this phenomenon. If Pluto has a liquid ocean and enough energy, it could be a haven for life.

What is Pluto made of?

Some of the elements that make up Pluto, according to NASA, are as follows:

Composition of the atmosphere: methane and nitrogen. New Horizons observations show that Pluto’s atmosphere extends up to 1,600 km above the surface of this dwarf planet.

Magnetic Field: Scientists still don’t know if Pluto has a magnetic field or not, But the dwarf planet’s small size and slow rotation suggest that such a field is weak or non-existent.

Chemical composition: Pluto is probably composed of a mixture of 70% rock and 30% water ice.

Internal structure: The dwarf planet probably has a rocky core surrounded by a mantle of water ice, and unusual frozen elements such as methane, carbon monoxide, and nitrogen cover its surface.

Orbital features of Pluto

Pluto’s highly elliptical orbit can take it over 49 times the distance from Earth to the Sun. Because the dwarf planet’s orbit is highly eccentric, or non-circular, Pluto’s distance from the Sun can vary dramatically. The dwarf planet was actually closer to the Sun than Neptune for 20 years of its 248-year orbital period, giving astronomers a rare opportunity to study this small, cold, and distant world.

As a result of such an orbit, after being considered the eighth planet from the Sun for 20 years, Pluto passed the orbit of Neptune in 1999 and became the farthest planet from the Sun until it was finally demoted to a dwarf planet in 2006.

As Pluto moves closer to the Sun, its surface ice melts, temporarily forming a thin atmosphere composed mostly of nitrogen and some methane. The insignificant gravity of Pluto, which is a little more than one-twentieth of the gravity of the Earth, causes this atmosphere to expand to a much higher height compared to the Earth’s atmosphere.

As the dwarf planet moves farther from the Sun, much of its atmosphere appears to freeze and disappear. However, when Pluto has an atmosphere, it can probably experience strong winds. This atmosphere also has changes in brightness, which can be caused by gravity waves or airflow over the mountains.

Although Pluto’s atmosphere is too thin to allow liquids to flow today, liquid elements may have flowed on the dwarf planet’s ancient surface in the past. New Horizons captured an image of a frozen lake in the Tampa area that appeared to have ancient waterways nearby. At one point in its history, Pluto could have had an atmosphere almost 40 times thicker than that of Mars.

Artist rendering of NASA's New Horizons probeArtist’s rendering of NASA’s New Horizons spacecraft.

In 2016, scientists announced that they may have observed clouds in Pluto’s atmosphere using data from New Horizons. The researchers saw seven bright objects that were located near the boundary between light and dark. This area is usually where clouds form. These possible clouds were all at low altitudes and almost the same size, which indicates that they are separate complications. The composition of the clouds, if they really exist, would probably be acetylene, ethane, and hydrogen cyanide.

Interesting facts about Pluto’s orbit

  • Pluto’s rotation is retrograde compared to other worlds in the solar system; This means that the dwarf planet rotates backwards and from east to west.
  • The average distance from the sun: 5,906,380,000 km or 39.4 astronomical units.
  • Periphery (shortest distance to the Sun): 4,434,987,000 km or 30.1 AU.
  • Apogee (farthest distance from the Sun): 7,304,326,000 km or 48 AU.
  • Pluto’s orbital path around the Sun is not in the same plane as the eight planets of the solar system; Rather, it is located at an angle of 17 degrees.
Pluto's orbit around the Sun compared to the planets of the Solar SystemPluto’s orbit around the Sun compared to other planets and the asteroid belt.

Why is Pluto no longer a planet?

Those who went to school until 17 years ago and before that, had learned in textbooks that Pluto is the ninth planet of the solar system. But in August 2006, the International Astronomical Union (IAU) downgraded Pluto to a “dwarf planet”. This meant that from then on, only the rocky worlds of the inner solar system and the gas giants of the outer reaches of the planet were considered.

The “inner solar system” is a region of space smaller than the radius of Jupiter’s orbit around the Sun. This range includes the asteroid belt as well as rocky planets such as Mercury, Venus, Earth, and Mars. Gas giants including Jupiter, Saturn, Neptune, and Uranus also form the outer limits of the solar system. As a result, now we have eight planets instead of nine.

According to the IAU definition, a “dwarf planet” is a celestial body that orbits directly around the Sun and has enough mass to be controlled by gravitational forces rather than mechanical forces, and as a result, is elliptical in shape; But it doesn’t clear the surrounding area from other objects. The three IAU criteria for a planet are as follows:

  • It revolves around the sun.
  • It has cleared the area around its orbit.

Pluto only meets the above two conditions and does not meet the third criterion, and in all the billions of years it has existed at this point, it has not been able to clear its vicinity. You may ask, what does “clearing the surrounding area of ​​other objects” mean? This condition means that the planet is dominated by gravity and there is no other body of similar size in its vicinity, except for moons or objects that are influenced by its gravity; While Pluto shares its neighborhood with Kuiper belt objects like plutinos.

Some scientists in recent years have demanded that by changing the definition of a planet, Pluto will return to the group of planets in the solar system. However, if this happens, the number of planets in our cosmic neighborhood may exceed the current number.

Does Pluto have moons?

Pluto has five moons: Charon, Stokes, Nyx, Cerberus, and Hydra, of which Charon is the closest moon to Pluto and Hydra is the farthest.

In 1978, astronomers discovered that Pluto has a very large moon, almost half the size of the dwarf planet itself. This moon was named Charon or Kharon, inspired by the spirit-carrying creature in Greek mythology that led souls to the underworld.

Because Charon and Pluto are so similar in size, their orbits differ from those of most of the planets and their moons. Much like binary star systems, Pluto and Charon both orbit a point in space that lies between them. For this reason, scientists refer to Pluto and Charon as a binary dwarf planet, binary planet, or binary system.

Pluto and its moon CharonComposite of color-enhanced images of Charon (top left) and Pluto (bottom right) taken by the New Horizons spacecraft in 2015.

Pluto and Charon are only 19,640 kilometers apart, or less than the distance between London and Sydney by plane. Charon’s orbit around Pluto takes 6.4 Earth days, and one Pluto revolution (one Pluto day) takes the same amount of time. The reason for this is that Charon hovers over the same point on Pluto’s surface, and the same side of the moon is always seen from the dwarf planet. This phenomenon is called fatal lock.

While Pluto has a reddish hue, Charon appears more grayish. This moon may have contained a subsurface ocean in the early days of its formation; But today, it probably cannot support such a complication. Compared to most of the planets and moons of the solar system, the system of Pluto and Charon is turned sideways with respect to the Sun.

New Horizons observations of Charon revealed the existence of valleys on the moon’s surface. The largest Sharon valley is 9.7 km deep, and a large mass of rocks and depressions stretches 970 km in the middle of the moon. A part of the moon’s surface near one pole is covered with much darker material than the rest.

Much of Charon’s surface is similar to Pluto’s crater-free regions, indicating that the moon is quite young and geologically active. Scientists have observed evidence of landslides on Charon’s surface, the first observation of such phenomena in the Kuiper Belt. The moon may also have its own form of plate tectonics; A phenomenon that causes geological changes on earth.

In 2005, in preparation for NASA’s New Horizons mission, scientists photographed Pluto using the Hubble Space Telescope and found two other small moons of this dwarf planet. These moons, named Nyx and Hydra, are two and three times more distant from the dwarf planet than the distance between Charon and Pluto. Based on New Horizons measurements, the length and width of Nix are estimated to be 42 and 36 kilometers, respectively; While Hydra is 50 km long and 30 km wide. It is likely that the surface of Hydra is mainly covered by water ice.

Pluto and its moons from the Hubble Space TelescopePluto and its moons from the Hubble Space Telescope.

Using the Hubble telescope, scientists discovered Pluto’s fourth moon, Herbrus, in 2011. This moon has a two-part shape, the big part is about 8 km long and the small part is about 5 km wide. On July 11, 2012, a fifth moon named Stokes (with an estimated diameter of 10 km) was discovered, further fueling the debate over Pluto’s planet status.

The main hypothesis for the formation of Pluto and Charon is that the nascent Pluto had a surface collision with another body of its size. According to this idea, most of the combined material of the two bodies became Pluto and the other remnants formed Charon. The other four moons may have formed from the same collision that created Charon.

Journey to Pluto

The New Horizons spacecraft is the first probe to closely study Pluto, its moons, and other Kuiper Belt worlds. The spacecraft was launched in January 2006 and successfully made its closest approach to the dwarf planet on July 14, 2015. The New Horizons probe is carrying some of the ashes of Pluto discoverer Clyde Tamba.

Limited knowledge of the Pluto system created unprecedented risks for the New Horizons probe. Before the mission launch, scientists knew of only three moons around Pluto. Herbrus and Stokes’ discovery during the spacecraft’s journey fueled the idea that more unseen moons may be orbiting the dwarf planet. Hitting these hidden moons or even small debris could seriously damage the spacecraft. However, the New Horizons team equipped the space probe with tools to protect it during its journey.

In October 2015, New Horizons made history by sending the first close-up images of Pluto and its moons. You can see these amazing pictures at the end of the article.

Currently, no other mission after New Horizons is officially planned to visit Pluto; But at least two conceptual designs are under study. In April 2017, a workshop was held in Houston, Texas to discuss ideas for the next Pluto mission. Possible goals discussed by the team for such a mission include mapping the surface with an accuracy of 9 meters per pixel, observations of Pluto’s smaller moons, how Pluto changes as it rotates on its axis, and topographic mapping of regions darkened by the dwarf planet’s axial tilt. They are long-term.

New Horizons principal investigator Ellen Stern believes that if an orbiter were sent to study Pluto, we could map 100 percent of the dwarf planet, even the surfaces in total shadow. New Horizons data indicated the possible existence of a subsurface ocean on Pluto, and researchers believe that the orbiter mission can also find evidence of such a complex.

Pictures of Pluto and its moons

Blue haze surrounding the dwarf planet PlutoAfter passing by Pluto, New Horizons looked back to photograph the blue dust surrounding the dwarf planet.
Charon is the largest moon of PlutoEnhanced color image of Charon, Pluto’s largest moon.
Snakeskin texture on part of Pluto's surfaceEnhanced color image of the “snakeskin” texture on part of Pluto’s surface.
The edge of the Sputnik Plateau on PlutoColor-enhanced image of the edge of the Sputnik Plateau, the icy plain that forms the left side of Pluto’s heart-shaped region.
Pluto's atmospheric dust over its rugged mountains and icy plainsPluto’s atmospheric dust over the rugged mountains and icy plains of this dwarf planet.
A partial view of the sunset on PlutoA partial sunset view shows rugged mountains with a maximum height of 3,350 meters.
Pluto's Sputnik PlateauSputnik plateau. The images used to make this composite photo were taken from a distance of 80,000 km.
Nix, Pluto's moon, from the perspective of New HorizonsLow-resolution image of Nix, a moon of Pluto.
Pluto's moon Hydra as seen by New HorizonsLow-resolution image of Hydra, Pluto’s moon.

Space

Why is it still difficult to land on the moon?

Published

on

By

moon
More than half a century after the first spacecraft to reach the moon, a successful landing on Earth’s only moon remains a challenge for space agencies and private companies.

Why is it still difficult to land on the moon?

This year, the private company Spacel and the Indian Space Organization both met tragic ends when they tried to land their spacecraft on the surface of the moon. Despite the astonishing leaps made in recent decades in computing, artificial intelligence and other technologies, it seems that landing on the moon should be easier now; But recent setbacks show that we still have a long way to go with safe and trouble-free landings on the surface of Earth’s only moon.

50 years after sending the first man to the surface of the moon, the question arises as to why safely landing a spacecraft on Earth’s nearest cosmic neighbor is still a difficult task for space agencies and private space companies. Stay with Zoomit to check the answer to this question.

Why is the lunar landing associated with 15 minutes of fear?

Despite the complexities of any space mission, sending an object from Earth into orbit around the moon today is easy. Christopher Riley, the director of the documentary film In the Shadow of the Moon produced in 2007 and the author of the book Where We Stood (2019), both of which are about the history of the Apollo 11 mission, explained the reasons for the difficulty of landing on the moon in an interview with Digital Trends. is According to him: “Today, the paths between the Earth and the Moon are well known, and it is easy to predict them and fly inside them.”

Chandrayaan-2
Chandrayaan 2 mission launch

However, the real challenge is getting the spacecraft out of orbit and landing it on the lunar surface; Because there is a delay in the communication between the Earth and the Moon, and the people in the control room who are present on the Earth cannot manually control the spacecraft in order to land it safely on the Moon. As a result, the spacecraft must descend automatically, and to do so, it will fire its descent engines to slow its speed from thousands of kilometers per hour to about one meter per second, in order to make a safe landing on the lunar surface.

For this reason, the director of the Indian Space Research Organization (ISRO), who was trying to land the Vikram lander last month, described the final descent of the spacecraft as “frightening 15 minutes”; Because as soon as the spacecraft enters the landing stage, the control of its status is out of the hands of the mission control members. They can only watch the spacecraft land and hope that everything goes according to plan, that hundreds of commands are executed correctly, and that the automatic landing systems gently bring the spacecraft closer to the surface of the moon.

The Great Unknown: The Landing Surface

One of the biggest challenges in the final descent phase is identifying the type of landing site. Despite the availability of instruments such as the Lunar Reconnaissance Orbiter (LRO) that can capture amazing views of the lunar surface, it is still difficult to know what kind of surface the spacecraft will encounter when it lands on the moon.

Beresheet crash site
Left: Breshit crash site. Right: The ratio of the before and after images highlights the occurrence of minor changes in surface brightness.

Leonard David, author of Moon Fever: The New Space Race (2019) and veteran space reporter, says:

The Lunar Reconnaissance Orbiter is a very valuable asset that has performed really well over the years; But when you get a few meters above the surface of the moon, complications appear that cannot be seen even with the very powerful LRO camera.

Even today, despite the imaging data available, “some landing sites still have unknown remains,” Riley says. He notes that the Apollo 11 mission included an advantage that today’s unmanned landers lack, which is the presence of an astronaut’s observer’s eyes that can closely observe the surface of the spacecraft’s landing site. As you probably know, in the mission that led to the landing of the first man on the surface of the moon, the Eagle computer was guiding the spacecraft to a place full of boulders; But to avoid hitting the rocky surface of the moon, Armstrong took control of the spacecraft himself and landed it on a flat surface.

Apollo 11 / Apollo 11

The uneven surface of the landing site had caused many problems in previous lunar missions such as Apollo 15. In this mission, the astronauts were told that as soon as the spacecraft touched the surface of the moon, they should turn off the engines to prevent dust from being sucked in and the risk of a return explosion. But the Apollo 15 spacecraft landed in a crater, and because of this, one of its legs came into contact with the surface earlier than the others. When the crew shut down the engines, the spacecraft, moving at a speed of 1.2 meters per second, experienced a hard landing. The lander landed at an oblique angle, and although it eventually landed safely, it nearly overturned, causing a fatal disaster.

  • Half a century after Apollo 11; How did the great human leap happen?
  • dust storms; The nightmare of space missions to the moon

The difficult landing of Apollo 15 introduced another complicating factor in lunar landings: lunar dust. The Earth’s moon is covered with dust that is thrown into the air by any movement and sticks to everything it comes in contact with. As the spacecraft approaches the surface of the moon, huge plumes of dust are kicked up that limit the field of view and endanger the spacecraft’s electronics and other systems. We still do not have a solution to deal with the dust problem.

An achievement that has been achieved before

Another reason why the moon landing remains a challenge is that gaining public support for lunar projects seems difficult. Referring to Neil Armstrong and Buzz Aldrin, the two astronauts who walked on the moon during the Apollo 11 mission, David says, “We convinced ourselves that we had sent Neil and Buzz [to the surface of the moon]; “As a result, when it comes to lunar missions, people may say we’ve been there before and we’ve had this success.”

Apollo 11 / Apollo 11

But in reality, our understanding of the moon is still very little, especially in relation to long-term missions. Now, with a 50-year gap between the Apollo missions and NASA’s upcoming Artemis project, the knowledge gained has been lost as engineers and specialists retire. David says:

We need to recover our ability to travel into deep space. We haven’t gone beyond near-Earth orbit since Apollo 17 and since 1972. NASA is no longer the same organization that put men on the moon, and there is a whole new generation of mission operators.

The importance of redundancy

As the first private spacecraft entered into orbit around the moon, the Space project was of considerable importance; But its failure to land smoothly on the surface of the moon made the achievement of landing on the surface of the moon still remain in the hands of governments. However, we can expect more private companies, such as Jeff Bezos ‘ Blue Origin, which is developing its lunar lander, to target the moon in the future. According to Elon Musk, even the giant SpaceX Starship spacecraft, which is being built with the ultimate goal of sending a human mission to Mars , can also land on the moon.

According to David, private companies’ participation in lunar landings has advantages such as increased innovation. However, companies are under pressure to save money, and this can lead to a lack of redundancy and support systems that are essential in the event of errors and malfunctions. Lunar rovers typically include two or even three layers of support systems. David is concerned that private companies will be encouraged to eliminate these redundancies in order to cut costs and save money.

Crew Dragon
Crew Dragon SpaceX passenger capsule

“We saw Elon Musk’s Dragon capsule catch fire after a failed test on the stand,” says David, referring to the explosion of the SpaceX spacecraft in April, which had no crew on board. “This accident was kind of a wake-up call about how unpredictable the performance of spacecraft can be.” David compared the Crew Dragon incident to the Apollo 1 disaster, which killed three NASA astronauts during a test launch in 1967.

Another problem related to the lack of redundancy systems is the lack of information needed when an error occurs. As for the recent landings, it seems that the SpaceX crash was caused by human error; however, it is not clear what caused the failure of Chandrayaan 2 in the calm landing, and it is possible that without the necessary systems to record and send information to the lander, we will never find out the main reason for the failure of this mission. Without the required data, it becomes much more difficult to prevent problems from reoccurring in the future.

The future of lunar landings

Currently, many projects are underway to facilitate future moon landings. Ultimately, we need to be able to build the necessary infrastructure for a long-term stay on the moon.

Moonrise Project
Conceptual design of Moonrise technology on the moon. On the left side is the Alina lunar module, and on the right side, the lunar rover equipped with Moonrise technology melts the lunar soil with the help of a laser.

If we can make long-term stays on the moon possible, or even build a permanent base there, landing spacecraft on the lunar surface will be much easier. By constructing the landing sites, a flat, safe, and free surface of unknown debris can be created for the landing of surface occupants. For example, researchers are currently conducting research at NASA’s Kennedy Space Center to investigate the feasibility of using microwaves to melt the lunar soil (regolith) and turn it into a hard foundation so that it can be used as a landing and launch site. The European Space Agency is also investigating how to use 3D printing to create landing sites and other infrastructure on the moon.

Read more: Europa Clipper, NASA’s flagship probe was launched

Other ideas include the use of lidar remote sensing systems, which are similar to radar systems; But instead of radio waves, it uses lasers to land the spacecraft. Lidar technology provides more accurate readings and uses a network of GPS satellites to help guide the spacecraft during landing.

The problem of public support

As important as technology is, public interest and support are essential to the success of the lunar landing program. “Apollo had enormous resources that are perhaps only comparable today to China’s space program,” says Riley. “Remember that Apollo carried the best computer imaginable, the human brain.” It goes without saying that there is an element of luck involved in every landing.

Mike Pence
US Vice President Mike Pence speaking at the 50th anniversary of the Apollo 11 mission

Finally, there is the question of what kind of failure is acceptable for people. David says:

I think we have to be serious about the fact that we’re probably going to lose people. There is a serious possibility that the manned lunar lander will crash and kill the astronauts inside. The American people continued to support NASA despite the failures and bad luck of the Apollo program, But at that time there was a lot of pressure to compete with the Soviet Union. Without the bipolar atmosphere of the Cold War and the space race, would people still support missions with human lives in between?

Continue Reading

Space

Europa Clipper, NASA’s flagship probe was launched

Published

on

By

Europa Clipper
The highly anticipated Europa Clipper probe has finally begun its long journey to uncover the mysteries of Europa, Jupiter’s moon, by launching aboard a SpaceX Falcon Heavy rocket.

Europa Clipper, NASA’s flagship probe was launched

After years of waiting, NASA’s Europa Clipper probe was finally launched on Monday at 7:36 p.m. Iran time from the Kennedy Space Center on top of SpaceX’s Falcon Heavy rocket and began a major astrobiology mission to Europa, the potentially habitable moon of Jupiter.

As SpaceX’s massive rocket powered by 27 powerful Merlin engines lifted off from pad 39A, NASA live broadcast reporter Dron Neal said, “The launch of Falcon Heavy with Europa Clipper will reveal the secrets of the vast ocean beneath the icy crust of Europa, Jupiter’s moon. It has been hidden, it will reveal.”

The engines of the two side boosters of the Falcon Heavy were shut down and separated from the central booster approximately three minutes after the flight. The central booster continued to fly for another minute, and then in the fourth minute of the launch, the separation of the upper stage from the first stage was confirmed. Finally, 58 minutes later, Europa Clipper was injected into interplanetary orbit as scheduled. A few minutes later, the mission team made contact with the probe, and people in the control room cheered and applauded.

Falcon Heavy’s unique launch

The launch of NASA’s new probe was delayed due to some mishaps. NASA and SpaceX initially planned to launch the Europa Clipper mission on Thursday, October 10; But with powerful Hurricane Milton hitting Florida’s Gulf Coast on Wednesday evening, a delay in the launch became inevitable. NASA shut down Kennedy Space Center to deal with the storm, and Europa Clipper was placed inside SpaceX’s hangar near Launch Pad 39A.

The recent launch was Falcon Heavy’s 11th flight overall and its second interplanetary mission. Also, this was the first flight of the Falcon Heavy, when all three boosters of the first stage of the rocket were deployed.

Typically, the Falcon Heavy and Falcon 9 first-stage boosters store enough fuel to perform landing maneuvers for recovery and reuse in the future; But Europa Clipper needed all the power that Falcon Heavy could provide in order to make it on its way to the Jupiter system.

A long way to the launch pad

In late 2015, the US Congress directed NASA to launch Europa Clipper using the Space Launch System (SLS), NASA’s massive rocket. SLS was still under construction at the time and was several years away from reaching the launch pad. The delay in completing the construction of this powerful rocket and NASA’s need to assign at least the first three versions of SLS to the Artemis lunar mission caused the Europa Clipper launch date to be in an aura of uncertainty.

In the 2021 House budget draft for NASA, the agency was directed to launch Europa Clipper by 2025 and, if possible, with SLS. However, due to the unavailability of the Space Launch System, NASA had to go to SpaceX’s Falcon Heavy. This decision was not without cost. As the most powerful rocket ever used in an operational mission, SLS can send Europa Clipper directly to the Jupiter system in less than three years.

Europa Clipper will use the gravitational assistance of Mars and Earth on its way to the Jupiter system

Now, even in Falcon Heavy’s fully disposable mode, the Clipper’s trip to Europe takes almost twice as long. The probe should make a flyby of Mars in February 2025 and a flyby of Earth in December 2026 to gain enough speed to reach its destination in April 2030.

Missile problems were not the only obstacles facing Europa Clipper on its way to the launch pad. For example, the rising costs of this five billion dollar probe forced NASA to cancel the construction of one of the probe’s science instruments. This instrument, named “Identification of Europa’s internal features using a magnetometer” (ICEMAG), was designed to measure Europa’s magnetic field.

Then in May 2024, NASA found that transistors similar to those used in Europa Clipper, which are responsible for regulating the probe’s electricity, were “failing at lower-than-expected radiation doses.” Following this discovery, NASA conducted more tests on the transistors and finally concluded in late August that these components could support the initial mission in the radiation-rich environment around Jupiter.

Ambitious mission to a fascinating moon

Imaging from the Europa Clipper probe over Europa, Jupiter's oceanic moon

NASA/Jet Propulsion Laboratory-Caltech

Europa Clipper is one of NASA’s most exciting and ambitious flagship missions, and it has impressive features. For example, the mission probe is the largest spacecraft NASA has ever built for a planetary mission. Europa Clipper weighed almost 6,000 kg at the time of launch and will be more than 30 meters long (bigger than a basketball court) by opening its huge solar panels in space.

Clipper’s Europa destination is also a prominent location: Europa, one of Jupiter’s four Galilean moons. The moon is covered with an icy outer shell, which scientists believe hides a vast ocean of salty liquid water. For this reason, Europa is considered one of the best places in the solar system to support alien life.

In early 2012, studies began to look for potential plumes of water rising from Europa’s surface. Some researchers theorize that those water columns and vents from which the columns protrude may contain evidence of life living beneath the moon’s icy crust. However, NASA scientists have made it clear that Europa Clipper is not looking for extraterrestrial life in Europa; Rather, this probe will only investigate the potential of the submoon water environment to support life.

“If there’s life on Europa, it’s going to be under the ocean,” Bonnie Buratti, senior Europa Clipper scientist at NASA’s Jet Propulsion Laboratory, said in September. As a result, we cannot see it.” “We will be looking for organic chemicals that are prerequisites for life on the surface of the moon,” Borrati added. There are things we can observe; such as DNA or RNA; But we don’t expect to see them. As a result, [the probe] is only looking for habitable environments and evidence for the ingredients of life, rather than life itself.”

NASA scientists have made it clear that Europa Clipper is not looking for extraterrestrial life in Europa

Europa Clipper will collect data using a suite of nine scientific instruments, including visible and thermal cameras, several spectrometers, and special equipment to identify Europa’s magnetic environment. As stated on NASA’s Europa Clipper page, the probe will help scientists achieve three main goals:

  • Determining the thickness of Europa’s ice sheet and understanding how Europa’s ocean interacts with the lunar surface.
  • Investigating the composition of Europa’s ocean to determine whether it has the materials necessary to form and sustain life.
  • Studying the formation of Europe’s surface features and discovering signs of recent geological activities; such as the sliding of crustal plates or the discharge of water columns in space.

Europa Clipper also transports Earth’s culture to the Solar System. A piece called “In Praise of Mystery: A Poem for Europe” by Edda Lemon, a famous American poet, is engraved in the artist’s own handwriting on a metal plate. In addition, the probe carries a coin-sized chip that contains the names of 2.6 million inhabitants of planet Earth.

6-year journey

Illustration of Europe Clipper over Europe

Johns Hopkins University Applied Physics

If all goes according to plan, Europa Clipper will enter Jupiter’s orbit in April 2030. When the probe gets there, it will use up 50-60% of its 2,722 kg of fuel by performing an injection maneuver for 6-8 hours.

The injection maneuver puts Europa Clipper in an elliptical orbit around the gas giant. A series of long maneuvers will then be performed to align the trajectory so that the probe can fly by Europa more than 45 times and study it closely. In fact, Europa Clipper will remain around Jupiter throughout its mission; Because according to the launch environment of Europa, it will be very dangerous for the spacecraft to go around the moon.

If all goes according to plan, Europa Clipper will enter Jupiter’s orbit in April 2030

The first flight over Europe will not take place before the spring of 2031. NASA will use the first pass to make further corrections to Europa Clipper’s trajectory in preparation for the probe’s first science mission. With the start of scientific flybys in May 2031, Europa Clipper will aim its array of sensors towards the far hemisphere from Jupiter and will approach the surface of the moon up to 25 km. The second science campaign will begin two years later, in May 2033, in the Jupiter-facing hemisphere of Europa.

The end of the Europa Clipper mission is set for September 2034. At that time, NASA will crash the spacecraft into Ganymede, another Galilean moon of Jupiter. This disposal strategy was chosen because Ganymede is considered a relatively poor candidate to host life, and the mission team wanted to make sure they did not contaminate potentially life-hosting Europa with terrestrial microbes.

Continue Reading

Space

Dark matter and ordinary matter can interact without gravity!

Published

on

By

dark matter
Dark matter and ordinary matter can interact without gravity! Dark matter, which has five times the mass of normal matter, helps hold galaxies together and explains the puzzling motions of stars. Now a new study has shown that these two substances can interact with each other without the presence of gravity.

Dark matter and ordinary matter can interact without gravity!

Why is dark matter associated with the adjective “dark”? Is it because it harbors some evil forces of the universe or hidden secrets that scientists don’t want us to know? No, it is not. Such fanciful assumptions may sound appealing to a conspiracy theorist, but they are far from the truth.

Dark matter is called dark because it does not interact with light. So when dark matter and light collide, they pass each other. This is also why scientists have not been able to detect dark matter until now; it does not react to light.

Although it has mass and mass creates gravity, this means that dark matter can interact with normal matter and vice versa. Such interactions are rare, and gravity is the only known force that causes these two forms of matter to interact.

However, a new study suggests that dark matter and ordinary matter interact in ways other than gravity.

If this theory is correct, it shows that our existing models of dark matter are somewhat wrong. In addition, it can lead to the development of new and better tools for the detection of dark matter.

Read more: There is more than one way for planets to be born

A new missing link between dark and ordinary matter

Dark matter is believed to have about five times the mass of normal matter in our universe, which helps hold galaxies together and explains some of the motions of stars that don’t make sense based on the presence of visible matter alone.

For example, one of the strongest lines of evidence for the existence of dark matter is the observation of rotation curves in galaxies, which show that stars at the outer edges of spiral galaxies rotate at rates similar to those near the center. These observations indicate the presence of an invisible mass.

Also, for their study, the researchers studied six ultra-dim dwarf (UFD) galaxies located near the Milky Way. However, in terms of their mass, these galaxies have fewer stars than they should. This means they are mostly made up of dark matter.

According to the researchers, if dark matter and normal matter interact only through gravity, the stars in these UFDs should be denser in the centers and more spread out toward the edges of the galaxies. However, if they interact in other ways, the star distribution looks different.

The authors of the study ran computer simulations to investigate both possibilities. When they tested this for all six ultra-dim dwarf (UFD) galaxies, they found that the distribution of stars was uniform, meaning that the stars were spread evenly across the galaxies.

This was in contrast to what is generally observed for gravitational interactions between dark matter and normal matter.

What causes this interaction?

The results of the simulations showed that gravity is not the only force that can make dark matter and normal matter interact. Such an interaction has never been observed before, and it could change our understanding of dark matter and dark energy.

However, this study has a major limitation. What caused the interaction between the two forms of matter is still a mystery. While the current study provides tantalizing hints of a novel interaction, its exact nature and underlying causes remain unknown. Hopefully, further research will clarify the details of such interactions.

This study was published in The Astrophysical Journal Letters.

Continue Reading

Popular