Connect with us


Pluto; Everything you need to know



Pluto is a dwarf planet and the largest mass in the Kuiper belt, which was once known as the ninth planet in the solar system; But later he lost this position.

Pluto; Everything you need to know

Pluto or Pluto is the largest known dwarf planet in the solar system, which used to be the ninth and outermost planet in the solar system. This strange world is located in the Kuiper Belt; A region beyond Neptune’s orbit with hundreds of thousands of rocky and icy bodies each more than 100 kilometers across, as well as a trillion or more comets.

Pluto was reclassified as a dwarf planet in 2006 and lost the title of ninth planet. The demotion of Pluto was a controversial event and provoked serious discussions in the scientific community and among people.

Table of Contents
  • How was Pluto discovered?
  • What does Pluto look like?
  • What is Pluto made of?
  • Orbital features of Pluto
  • Interesting facts about Pluto’s orbit
  • Why is Pluto no longer a planet?
  • Does Pluto have moons?
  • Journey to Pluto
  • Pictures of Pluto and its moons

How was Pluto discovered?

Percival Lowell, an American astronomer, first proposed the existence of Pluto in 1905 when he observed strange deviations in the orbits of Uranus and Neptune. Lowell thought there must be another object whose gravity was affecting the ice giants, causing them to misalign their orbits. Lowell predicted the position of the mysterious planet in 1915, But he died 15 years before its discovery. Finally, based on the predictions of Lowell and other astronomers, Clyde Tamba discovered Pluto in 1930 at the Lowell Observatory in Arizona.

Clyde Tamba discovered the dwarf planet Pluto
Clyde Tamba, discoverer of the dwarf planet Pluto.

Pluto was named by the suggestion of Venisha Burney , an 11-year-old child from England. With the news of the discovery of the ninth planet, Venisha suggested to her grandfather that the name of the god of the underworld in Roman mythology be placed on it. His grandfather then passed the suggested name on to the Lowell Observatory. Pluto is also considered to be a tribute to Percival Lowell because it contains the first two letters of Percival Lowell’s name.

What does Pluto look like?

Because Pluto is so far from Earth, little was known about the dwarf planet’s size or surface condition until 2015, when NASA’s New Horizons spacecraft flew past it. New Horizons showed that Pluto, with a diameter of 2,370 kilometers, is less than one-fifth the size of Earth and only about two-thirds the size of our planet’s moons.

New Horizons’ observations of Pluto’s surface revealed various surface features; Among the mountains whose height reaches 3500 meters and are comparable to the Rocky Mountains on Earth. Although frozen methane and nitrogen cover most of Pluto’s surface, these materials are not strong enough to support such high peaks; As a result, scientists believe that the mountains were formed on a bed of water ice.

The surface of Pluto as seen by the New Horizons spacecraftThe surface of Pluto was seen by NASA’s New Horizons spacecraft in July 2015.

Pluto’s surface is covered with an abundance of frozen methane, But New Horizons scientists have observed dramatic differences in the way light reflects off this icy surface across the surface of the dwarf planet. They have observed features similar to Earth’s ice sheets or erosion features in Pluto’s mountainous regions. These surface effects are much larger on Pluto; As it is estimated that their height is 500 meters; While the size of ground samples is only a few meters.

Another distinctive feature on Pluto’s surface is a large heart-shaped region known informally as the Tamba region. The left side of this area (the area that takes the shape of an ice cream cone) is covered with frozen carbon monoxide. Scientists have detected other changes in the composition of surface materials in the “heart” of Pluto.

At left center of the Tamba region is a very flat area that the New Horizons team has informally named the “Sputnik Plateau” in honor of Sputnik, the first artificial satellite to orbit Earth. This region of Pluto’s surface does not have craters caused by meteorite impact; A feature that shows that the Sputnik Plateau is geologically a very young region that is not more than a hundred million years old. It is possible that this area is still being formed and changed by geological processes.

Pluto’s ice plains show dark streaks several kilometers long that lineup. It is possible that these lines were formed by strong winds that blow on the surface of the dwarf planet. The Hubble Space Telescope has also obtained evidence that Pluto’s crust could contain complex organic molecules.

Pluto’s surface is one of the coldest places in the solar system. The temperature there can drop to minus 226 to minus 240 degrees Celsius. Comparing images taken of Pluto at different times showed that the dwarf planet appears to have become redder over time, possibly due to seasonal changes.

Pluto may have a subsurface ocean now or may have had one in the past. However, there is still no consensus on this. If an ocean had already formed under the surface of Pluto, it could have greatly influenced the history of this dwarf planet. For example, scientists believe that the Sputnik Plateau region grew so heavy over time as the ice mass increased that it overturned Pluto and brought its axial tilt to its present size (about 120 degrees). According to researchers, the subsurface ocean is the best explanation for this phenomenon. If Pluto has a liquid ocean and enough energy, it could be a haven for life.

What is Pluto made of?

Some of the elements that make up Pluto, according to NASA, are as follows:

Composition of the atmosphere: methane and nitrogen. New Horizons observations show that Pluto’s atmosphere extends up to 1,600 km above the surface of this dwarf planet.

Magnetic Field: Scientists still don’t know if Pluto has a magnetic field or not, But the dwarf planet’s small size and slow rotation suggest that such a field is weak or non-existent.

Chemical composition: Pluto is probably composed of a mixture of 70% rock and 30% water ice.

Internal structure: The dwarf planet probably has a rocky core surrounded by a mantle of water ice, and unusual frozen elements such as methane, carbon monoxide, and nitrogen cover its surface.

Orbital features of Pluto

Pluto’s highly elliptical orbit can take it over 49 times the distance from Earth to the Sun. Because the dwarf planet’s orbit is highly eccentric, or non-circular, Pluto’s distance from the Sun can vary dramatically. The dwarf planet was actually closer to the Sun than Neptune for 20 years of its 248-year orbital period, giving astronomers a rare opportunity to study this small, cold, and distant world.

As a result of such an orbit, after being considered the eighth planet from the Sun for 20 years, Pluto passed the orbit of Neptune in 1999 and became the farthest planet from the Sun until it was finally demoted to a dwarf planet in 2006.

As Pluto moves closer to the Sun, its surface ice melts, temporarily forming a thin atmosphere composed mostly of nitrogen and some methane. The insignificant gravity of Pluto, which is a little more than one-twentieth of the gravity of the Earth, causes this atmosphere to expand to a much higher height compared to the Earth’s atmosphere.

As the dwarf planet moves farther from the Sun, much of its atmosphere appears to freeze and disappear. However, when Pluto has an atmosphere, it can probably experience strong winds. This atmosphere also has changes in brightness, which can be caused by gravity waves or airflow over the mountains.

Although Pluto’s atmosphere is too thin to allow liquids to flow today, liquid elements may have flowed on the dwarf planet’s ancient surface in the past. New Horizons captured an image of a frozen lake in the Tampa area that appeared to have ancient waterways nearby. At one point in its history, Pluto could have had an atmosphere almost 40 times thicker than that of Mars.

Artist rendering of NASA's New Horizons probeArtist’s rendering of NASA’s New Horizons spacecraft.

In 2016, scientists announced that they may have observed clouds in Pluto’s atmosphere using data from New Horizons. The researchers saw seven bright objects that were located near the boundary between light and dark. This area is usually where clouds form. These possible clouds were all at low altitudes and almost the same size, which indicates that they are separate complications. The composition of the clouds, if they really exist, would probably be acetylene, ethane, and hydrogen cyanide.

Interesting facts about Pluto’s orbit

  • Pluto’s rotation is retrograde compared to other worlds in the solar system; This means that the dwarf planet rotates backwards and from east to west.
  • The average distance from the sun: 5,906,380,000 km or 39.4 astronomical units.
  • Periphery (shortest distance to the Sun): 4,434,987,000 km or 30.1 AU.
  • Apogee (farthest distance from the Sun): 7,304,326,000 km or 48 AU.
  • Pluto’s orbital path around the Sun is not in the same plane as the eight planets of the solar system; Rather, it is located at an angle of 17 degrees.
Pluto's orbit around the Sun compared to the planets of the Solar SystemPluto’s orbit around the Sun compared to other planets and the asteroid belt.

Why is Pluto no longer a planet?

Those who went to school until 17 years ago and before that, had learned in textbooks that Pluto is the ninth planet of the solar system. But in August 2006, the International Astronomical Union (IAU) downgraded Pluto to a “dwarf planet”. This meant that from then on, only the rocky worlds of the inner solar system and the gas giants of the outer reaches of the planet were considered.

The “inner solar system” is a region of space smaller than the radius of Jupiter’s orbit around the Sun. This range includes the asteroid belt as well as rocky planets such as Mercury, Venus, Earth, and Mars. Gas giants including Jupiter, Saturn, Neptune, and Uranus also form the outer limits of the solar system. As a result, now we have eight planets instead of nine.

According to the IAU definition, a “dwarf planet” is a celestial body that orbits directly around the Sun and has enough mass to be controlled by gravitational forces rather than mechanical forces, and as a result, is elliptical in shape; But it doesn’t clear the surrounding area from other objects. The three IAU criteria for a planet are as follows:

  • It revolves around the sun.
  • It has cleared the area around its orbit.

Pluto only meets the above two conditions and does not meet the third criterion, and in all the billions of years it has existed at this point, it has not been able to clear its vicinity. You may ask, what does “clearing the surrounding area of ​​other objects” mean? This condition means that the planet is dominated by gravity and there is no other body of similar size in its vicinity, except for moons or objects that are influenced by its gravity; While Pluto shares its neighborhood with Kuiper belt objects like plutinos.

Some scientists in recent years have demanded that by changing the definition of a planet, Pluto will return to the group of planets in the solar system. However, if this happens, the number of planets in our cosmic neighborhood may exceed the current number.

Does Pluto have moons?

Pluto has five moons: Charon, Stokes, Nyx, Cerberus, and Hydra, of which Charon is the closest moon to Pluto and Hydra is the farthest.

In 1978, astronomers discovered that Pluto has a very large moon, almost half the size of the dwarf planet itself. This moon was named Charon or Kharon, inspired by the spirit-carrying creature in Greek mythology that led souls to the underworld.

Because Charon and Pluto are so similar in size, their orbits differ from those of most of the planets and their moons. Much like binary star systems, Pluto and Charon both orbit a point in space that lies between them. For this reason, scientists refer to Pluto and Charon as a binary dwarf planet, binary planet, or binary system.

Pluto and its moon CharonComposite of color-enhanced images of Charon (top left) and Pluto (bottom right) taken by the New Horizons spacecraft in 2015.

Pluto and Charon are only 19,640 kilometers apart, or less than the distance between London and Sydney by plane. Charon’s orbit around Pluto takes 6.4 Earth days, and one Pluto revolution (one Pluto day) takes the same amount of time. The reason for this is that Charon hovers over the same point on Pluto’s surface, and the same side of the moon is always seen from the dwarf planet. This phenomenon is called fatal lock.

While Pluto has a reddish hue, Charon appears more grayish. This moon may have contained a subsurface ocean in the early days of its formation; But today, it probably cannot support such a complication. Compared to most of the planets and moons of the solar system, the system of Pluto and Charon is turned sideways with respect to the Sun.

New Horizons observations of Charon revealed the existence of valleys on the moon’s surface. The largest Sharon valley is 9.7 km deep, and a large mass of rocks and depressions stretches 970 km in the middle of the moon. A part of the moon’s surface near one pole is covered with much darker material than the rest.

Much of Charon’s surface is similar to Pluto’s crater-free regions, indicating that the moon is quite young and geologically active. Scientists have observed evidence of landslides on Charon’s surface, the first observation of such phenomena in the Kuiper Belt. The moon may also have its own form of plate tectonics; A phenomenon that causes geological changes on earth.

In 2005, in preparation for NASA’s New Horizons mission, scientists photographed Pluto using the Hubble Space Telescope and found two other small moons of this dwarf planet. These moons, named Nyx and Hydra, are two and three times more distant from the dwarf planet than the distance between Charon and Pluto. Based on New Horizons measurements, the length and width of Nix are estimated to be 42 and 36 kilometers, respectively; While Hydra is 50 km long and 30 km wide. It is likely that the surface of Hydra is mainly covered by water ice.

Pluto and its moons from the Hubble Space TelescopePluto and its moons from the Hubble Space Telescope.

Using the Hubble telescope, scientists discovered Pluto’s fourth moon, Herbrus, in 2011. This moon has a two-part shape, the big part is about 8 km long and the small part is about 5 km wide. On July 11, 2012, a fifth moon named Stokes (with an estimated diameter of 10 km) was discovered, further fueling the debate over Pluto’s planet status.

The main hypothesis for the formation of Pluto and Charon is that the nascent Pluto had a surface collision with another body of its size. According to this idea, most of the combined material of the two bodies became Pluto and the other remnants formed Charon. The other four moons may have formed from the same collision that created Charon.

Journey to Pluto

The New Horizons spacecraft is the first probe to closely study Pluto, its moons, and other Kuiper Belt worlds. The spacecraft was launched in January 2006 and successfully made its closest approach to the dwarf planet on July 14, 2015. The New Horizons probe is carrying some of the ashes of Pluto discoverer Clyde Tamba.

Limited knowledge of the Pluto system created unprecedented risks for the New Horizons probe. Before the mission launch, scientists knew of only three moons around Pluto. Herbrus and Stokes’ discovery during the spacecraft’s journey fueled the idea that more unseen moons may be orbiting the dwarf planet. Hitting these hidden moons or even small debris could seriously damage the spacecraft. However, the New Horizons team equipped the space probe with tools to protect it during its journey.

In October 2015, New Horizons made history by sending the first close-up images of Pluto and its moons. You can see these amazing pictures at the end of the article.

Currently, no other mission after New Horizons is officially planned to visit Pluto; But at least two conceptual designs are under study. In April 2017, a workshop was held in Houston, Texas to discuss ideas for the next Pluto mission. Possible goals discussed by the team for such a mission include mapping the surface with an accuracy of 9 meters per pixel, observations of Pluto’s smaller moons, how Pluto changes as it rotates on its axis, and topographic mapping of regions darkened by the dwarf planet’s axial tilt. They are long-term.

New Horizons principal investigator Ellen Stern believes that if an orbiter were sent to study Pluto, we could map 100 percent of the dwarf planet, even the surfaces in total shadow. New Horizons data indicated the possible existence of a subsurface ocean on Pluto, and researchers believe that the orbiter mission can also find evidence of such a complex.

Pictures of Pluto and its moons

Blue haze surrounding the dwarf planet PlutoAfter passing by Pluto, New Horizons looked back to photograph the blue dust surrounding the dwarf planet.
Charon is the largest moon of PlutoEnhanced color image of Charon, Pluto’s largest moon.
Snakeskin texture on part of Pluto's surfaceEnhanced color image of the “snakeskin” texture on part of Pluto’s surface.
The edge of the Sputnik Plateau on PlutoColor-enhanced image of the edge of the Sputnik Plateau, the icy plain that forms the left side of Pluto’s heart-shaped region.
Pluto's atmospheric dust over its rugged mountains and icy plainsPluto’s atmospheric dust over the rugged mountains and icy plains of this dwarf planet.
A partial view of the sunset on PlutoA partial sunset view shows rugged mountains with a maximum height of 3,350 meters.
Pluto's Sputnik PlateauSputnik plateau. The images used to make this composite photo were taken from a distance of 80,000 km.
Nix, Pluto's moon, from the perspective of New HorizonsLow-resolution image of Nix, a moon of Pluto.
Pluto's moon Hydra as seen by New HorizonsLow-resolution image of Hydra, Pluto’s moon.


The moon of the Earth; Features, discoveries, interesting facts and everything you need to know




The Moon
The moon is the only natural moon of the Earth, which has been the target of research more than any other celestial body.

The moon of the Earth; Features, discoveries, interesting facts and everything you need to know

The moon is Earth’s constant companion and the only moon you can easily see in the night sky. The phases of the moon have always been a guide for mankind for thousands of years; For example, calendar months are roughly equal to the time elapsed from one full moon to the next. Although the moon is close to Earth, it has many secrets hidden in it. For example, it always shows us one side, and at the same time, its apparent size in the sky depends on its position relative to the Earth and the sun.

The Latin word for moon is Luna, from which the English word lunar is derived. Also, in the Greek language, Selene is the name of the mythological god of the moon, from which the word selenology is derived.

Table of Contents
  • How was the moon formed?
  • The distance of the moon from the earth
  • What is the moon made of?
  • Surface characteristics of the moon
  • Moon’s atmosphere and weather
  • The orbit and phases of the moon
  • lunar eclipse
  • The seasons of the month
  • Photos and images of the moon
  • Earth rising from the moon
  • A close-up view of the impact crater
  • Full supermoon
  • Apollo 10 souvenir
  • The mountains of the moon
  • A station on the way to Jupiter
  • Image of Artemis
  • Discoveries and observations of the moon
  • space competition
  • Current missions
  • The future of lunar exploration
  • Interesting facts and tips about the moon
  • There are other theories about the formation of the moon
  • The moon’s atmosphere has a mysterious composition
  • The moon has a magnetic field
  • The moon once had a thicker atmosphere
  • Jules Verne wrote one of the most famous stories about traveling to the moon
  • Neil Armstrong was the first man to land on the surface of the moon
  • NASA plans to build a base on the moon
  • Conclusion

How was the moon formed?

According to a leading theory, the Earth’s moon was formed about 4.5 billion years ago and about 95 million years after the birth of the solar system (the age of the solar system is 4.6 billion). At that time, many space rocks were moving in the vicinity of our planet. According to astronomers, it was at this time that the early Earth collided with a body the size of Mars called Tia. This collision caused parts of our world to melt and leave the earth’s atmosphere. The materials removed from the earth formed the moon.

Some astronomers have proposed changes to the above theory. For example, the early Earth turned into donut-shaped molten rock after the collision with Theia. As this space donut cooled, the material on its outer edge turned into small moons and eventually formed the moon itself.

Half moonThe moon was formed approximately 4.5 billion years ago.

The distance of the moon from the earth

The average distance of the moon from the Earth is approximately 384,400 km. However, this distance is not constant because the Moon orbits the Earth in an elliptical orbit. At the closest distance of the moon from the earth, this distance decreases to 363 thousand kilometers. When the moon is at its furthest point from the earth, this distance reaches 405 thousand kilometers.

What is the moon made of?

The moon probably has a very small core that makes up only 1-2% of its mass and its diameter reaches 680 km. Most of this core is probably composed of iron, but a lot of sulfur and other elements are also found in it.

The diameter of the rocky mantle of the moon is approximately 1330 km and it is composed of iron and magnesium rocks. Magma in the mantle made its way to the moon’s surface in the past and was released through volcanic eruptions over a billion years. This eruption occurred between four billion and three billion years ago.

The thickness of the moon’s crust, which forms the lunar surface, reaches 70 km. The outermost part of the shell is broken and disorganized due to the large number of collisions.

In general, the moon, like the four inner planets of the solar system, is a rocky body and is covered with a large number of impact craters that were formed by the impact of asteroids millions of years ago.

The average composition of the lunar surface by weight is as follows: 43% oxygen, 20% silicon, 19% magnesium, 10% iron, 3% calcium, 3% aluminum, 0.42% chromium, 0.18% titanium and 0. 12 percent of manganese.

Orbiters have also discovered traces of surface water on the moon’s surface, possibly originating from beneath the surface. Continuous observations by the Lunar Reconnaissance Orbiter (LRO) show that water is more abundant on the south-facing slopes of the moon, and according to a 2017 study, the interior of the moon could also be full of water.

Surface characteristics of the moon

Ancient lava flows on the surface of the moonAncient lava flows on the surface of the moon

You can clearly see large dark areas on the surface of the moon. These areas are called “Maria” or “Maria” which is the Latin word for sea. The reason for choosing this name is that in the past people considered these areas to be seas of the moon. Today we know that these areas are actually scratches on the moon’s crust that were formed by lava flows billions of years ago.

Due to the absence of weather, almost no erosion occurs on the surface of the moon

Impact craters are other surface features of the moon. These craters are the result of meteorite and asteroid bombardment about a few billion years ago. Since the Moon has almost no atmosphere or active plate tectonics, no erosion has occurred to erase these craters, and as a result, these craters have remained unchanged since their formation.

On the other side of the moon, there is the Aitken Antarctic Basin, which is a crater with a diameter of 2,500 km and a depth of 13 km. The blue regions of the moon are located in the dark polar regions, which can be used for future exploration.

Moon’s atmosphere and weather

A very thin atmosphere covers the moon, with a density of only 100 molecules per cubic centimeter. In contrast, the Earth’s atmosphere has a billion billion times more molecules per cubic centimeter at sea level. The total mass of lunar gases reaches 25,000 kilograms, which is almost the same as a full cargo truck.

Water moleculesAs the temperature increases, water molecules are separated from the surface and as the temperature decreases, they disperse in colder regions and the moon’s atmosphere.

Moon’s atmosphere, which is also called the exosphere, is a combination of argon 40, helium 4, oxygen, methane, nitrogen, carbon monoxide, carbon dioxide, sodium, potassium, radon, polonium, and even small amounts of water. Some of these elements are left over from the cooling of the moon. Others were brought to the moon by comets.

Moondust is a combination of small and sharp particles of volcanic glass that shatter the lunar soil due to the impact of small meteors. The very thin atmosphere of the moon makes these particles rarely erode; For this reason, moon dust can damage astronauts’ equipment and clothes. This dust is extremely harmful to human health.

The orbit and phases of the moon

The influence of the moon’s gravity on the earth causes the rise and fall of the sea level or the phenomenon of tides. These tides occur on a smaller scale in lakes, the atmosphere, and even the Earth’s crust itself. The pull of the moon also slows down the speed of the earth’s rotation, which is called tidal braking; An event that increases the length of the day by 2.3 milliseconds per century. The energy that the Earth loses is absorbed by the Moon and increases its distance from the Earth. The moon moves 3.8 cm away from the Earth every year.

The moon appears in eight phases in its orbit around the Earth. One of the important points about the lunar phases is that the sun always illuminates exactly half of the moon. Lunar phases are created by changing the angle (relative positions) of the Earth, Moon, and Sun compared to each other. In simpler terms, the phase cycle of the moon can be described as follows: new moon and full moon and the phases in between.

The new moon appears when the moon is between the earth and the sun and these three bodies are in relative alignment with each other. In this case, the bright part of the moon is exactly on the other side of the moon, which terrestrial observers cannot see due to the ecliptic lock. In the full moon phase, the earth, moon and sun are in relative alignment just like the new moon phase, but this time the bright side of the moon is placed towards the earth, and the dark side is completely hidden from view.

Lunar eclipse

lunar eclipseSometimes the moon appears red during a total lunar eclipse

During a lunar eclipse, the Moon, Earth, and Sun are in a straight or relatively straight line. A lunar eclipse occurs when the Earth is directly between the Sun and the Moon and the Earth’s shadow falls on the face of the Moon. A lunar eclipse occurs only during a full moon. During a total lunar eclipse, the moon may appear red in the night sky because it is in shadow.

The seasons of the month

The axis of rotation of the Earth has a deviation of 23.5 degrees with respect to the plane of the ecliptic, and this issue causes the seasons on the Earth. On the other hand, the axial deviation of the moon is only 1.5 degrees, and for this reason, no significant difference can be seen in the seasons of the month. In this way, some areas of the moon are always exposed to sunlight and some areas are permanently in darkness.

Photos and images of the moon

Due to the close distance between the moon and the earth, many spacecraft and ground and space telescopes have photographed it. In this section, we introduce some of the most attractive images of the moon from different angles.

Earth rising from the moon

Earth rising from the moonA view of Earth rising from the moon captured by South Korea’s Danori spacecraft

The sunrise is one of the most beautiful events that can be seen from the surface of the moon. This image shows Earth’s view of the Moon as our planet rises above the lunar surface, captured by South Korea’s Danori spacecraft in November 2022.

A close-up view of the impact crater

Moon impact craterTico impact crater

You can see a close-up of Tico’s impact crater in the image above. This massive impact crater is located on the southern side of the moon and was captured by the Greenbank Telescope in West Virginia. This photo is the most detailed image ever taken by a ground-based telescope of the lunar impact crater.

Full supermoon

Full supermoonA view of the full supermoon in front of the New York World Trade Center antenna

A full supermoon is a popular subject for many amateur and professional astrophotographers. This image shows the full supermoon in front of the World Trade Center antenna in New York City.

Apollo 10 souvenir

The moon from the perspective of Apollo 10The moon from the perspective of Apollo 10

The above image was captured by the Apollo 10 spacecraft in 1969. This spacecraft was NASA’s second manned spacecraft to orbit the moon and was a preparatory mission for the Apollo 11 landing, during which, for the first time in human history, astronauts landed on the surface of the moon.

The mountains of the moon

The mountains of the moonThe mountains of the moon

In this image, you can see the mountains of the moon from the perspective of NASA’s Lunar Exploration Orbiter in 2009. Moon mountains are formed by asteroid impacts.

A station on the way to Jupiter

Galileo spacecraft photo of the moonGalileo probe image of the moon

This beautiful image was captured by NASA’s Galileo spacecraft on its way to Jupiter in the mid-1990s. Galileo’s main mission was to study the planet Jupiter and its moons.

Image of Artemis

The moon as seen by the Orion spacecraftThe sunrise of the earth and the moon from the perspective of Orain spacecraft

The image above shows the Earth rising from behind the Moon as captured by the Orion spacecraft on NASA’s Artemis 1 mission in 2022.

Discoveries and observations of the moon

Some ancient societies believed that the moon is a ball of fire, while others thought it was a mirror that reflected the land and seas of the earth, but according to the ancient Greek philosophers, the moon was actually a sphere that revolved around the earth and the light of the sun. reflected

The ancient Greeks also believed that the dark areas of the moon were seas and the light areas were land. It was from this time that the names “Maria” and “Ter”, the Latin words for sea and land, were chosen for these areas. Galileo Galilei, the famous Renaissance astronomer, first observed the moon using a telescope in 1609. He described surface mountains that were completely different from popular belief.

Space competition

In 1959, the Soviet Union landed the first spacecraft, Luna 2, on the surface of the moon, and in the same year, the Luna 3 spacecraft captured the first images of the far side of the moon. These missions marked the beginning of the unmanned missions of the Cold War and the Soviet-US space race to reach the moon.

The missions of many early probes were either failures or partial successes. However, over time, these missions brought back valuable information about the moon’s surface and its history. The United States launched a series of missions called Pioneer, Ranger, and Surveyor, while the Soviet Union sent probes called Luna and Zond to the moon.

Apollo 12 lunar moduleApollo 12 lunar module

The United States sent astronauts into orbit and the surface of the moon in the 1960s and 1970s. Apollo 8 was the first manned mission to orbit the moon in 1968.

In 1969, astronauts landed on the surface of the moon during the Apollo 11 mission. Since then, five more surface missions have been successfully completed. Apollo 13 failed to land on the surface and returned home safely. Since then, the moon has remained the only space body on which humans have managed to land.

In total, the Apollo missions returned 382 kilograms of rock and soil to Earth for examination. Scientists continue to study rocks and make new discoveries as technology advances. For example, in 2013, water was discovered in Apollo 15, 16, and 17 samples.

The Soviet Union was still active in the field of robotics in the 1960s and 1970s. The first robotic sampling mission was launched with Luna 16 in September 1970 after several failed attempts. The Russians built the first robotic lunar rover named Lunakhod 1 just two months later. Lunakhod 2 was unveiled in 1973. The last successful Soviet mission to the moon was carried out in 1976 with Luna 24, and after that, the only moon of the earth was forgotten in the field of space exploration for several years.

Current missions

After the Apollo program ended more than a decade later, lunar exploration resumed in the 1990s. Since then, the space organizations of other countries such as Japan, the European Space Agency, China, and India have also joined the moon space race. China and India have succeeded so far among the new countries in the field of conquering the moon.

The future of lunar exploration

Other countries such as Japan, Russia, and the United Arab Emirates are currently planning and implementing a mission to the moon. In 2019, US President Donald Trump announced that NASA was working to send humans back to the moon by early 2025. Of course, this deadline is no longer achievable and the return of man to the moon will probably not be possible before 2028.

The Return to the Moon program, now called Artemis, is a project involving international and commercial partners that strives to carry out manned missions and permanently establish humans on the Moon, using NASA’s new space launch system, the Space Launch System (SLS), and the Starship rocket. SpaceX uses

The first Artemis mission, Artemis 1, completed an unmanned lunar orbit mission and returned to Earth in November 2022, setting the stage for subsequent manned missions. NASA’s Artemis 2 mission will send the first humans into lunar orbit in half a century, and then Artemis 3 will land the first female astronaut as well as the first person of color on the lunar surface.

Interesting facts and tips about the moon

The moon is one of the most attractive objects in the night sky for earthlings. Due to the proximity of this moon to the Earth, we can learn a lot of data about its formation and also about the planet Earth. Despite all the discoveries and research, the moon has many secrets. In this section, we introduce some examples of the most interesting facts about the month.

There are other theories about the formation of the moon

Apart from the theory of Tia’s collision with the Earth and the formation of the Moon, another theory claims that the Earth rotated so fast in its early life that its molten rocks flew into space and eventually formed the Moon. However, there is no evidence of rapid Earth rotation to support this idea. According to another theory, the moon is actually a dwarf planet similar to Pluto that is trapped in the Earth’s orbit. Scientists also reject this theory.

The moon’s atmosphere has a mysterious composition

Today we know that the moon’s atmosphere is a mixture of argon, helium, neon, sodium, polonium, potassium, and radon. However, some scientists raise the question of why, like the atmosphere of other objects, traces of oxygen and nitrogen are not seen in the moon’s atmosphere. On the other hand, the crust of the moon has both elements besides magnesium, hydrogen, and carbon. So far, scientists have not been able to find an answer to the mystery of the lack of nitrogen and oxygen in the moon’s atmosphere.

The moon has a magnetic field

One of the lesser-known facts about the moon is its magnetic field. Of course, this magnetic field is very weak compared to the Earth. Evidence from manned missions to the moon shows that the ancient moon had a magnetic field equal to that of Earth. Because of these findings, scientists believe that this magnetic field has weakened as the core of the moon has cooled and solidified.

Aldrin on the moon againA photo of Buzz Aldrin on the moon taken by Neil Armstrong

The moon once had a thicker atmosphere

According to a NASA discovery in 2017, the moon’s atmosphere was thicker in the past. The early moon’s atmosphere had sufficient elements despite continuous volcanic activity and a strong magnetic field. Over time, with the disappearance of volcanic activity and the weakening of the magnetic field, the solar winds destroyed the moon’s atmosphere.

Jules Verne wrote one of the most famous stories about traveling to the moon

Jules Verne, a French novelist, wrote the novel From the Earth to the Moon in 1865. The story of this novel focuses on the construction of a cylinder that can send an insulated object to the moon. Passengers are also inside this object. Finally, this cylinder is successfully built and launched. Verne describes the actual journey to the moon and the return of the passengers to Earth in the sequel to this novel, In Lunar Orbit.

Neil Armstrong was the first man to land on the surface of the moon

The Apollo 11 mission, launched on July 16, 1969, made history by landing on the lunar surface on July 20. Neil Armstrong, holding the American flag, set the record of being the first man to land on the surface of the moon. At the moment of stepping on the moon, he said this historical sentence:

A small step for a man and a giant leap for humanity

About 500 million people watched this historic moment from the ground.

NASA plans to build a base on the moon

From the beginning of this century, NASA began its plans to return to the moon by the end of the 2020s. The goal of the US space agency’s latest effort is to build the first permanent habitat on the moon by 2028. The success of this plan could have many implications for life on the Moon and other planets.


The moon has been the only moon of the Earth and one of the most attractive destinations for human exploration. The moon is full of impact craters that have remained unchanged for years due to the lack of weather. Also, this moon shows us only one side due to the tidal lock with respect to the Earth. Also, the gravity of the moon causes the creation of gravitational forces and so-called tides in the oceans and seas of the Earth.

Ancient people thought that the dark areas of the moon were seas and the light areas were land. However, later Galileo showed with more observations that these regions are only surface features and mountains of the moon. Competition to reach the moon intensified in the 20th century with Soviet and US missions, and finally, in 1969, the US landed the first man on the surface of the moon.

In the 21st century, mankind dreams of permanent and long-term residence on the surface of the moon. One such effort is NASA’s Artemis program, which aims to return the first humans to the moon in half a century and pave the way for permanent lunar bases.

Continue Reading


14 strange things we have sent into space




14 strange things we have sent into space
14 strange things we have sent into space. From Tesla cars to disco balls to the hair of US presidents, humans have sent strange objects into space.

14 strange things we have sent into space

Space is increasingly being filled with man-made objects. Most of these objects are what you would expect to find in space, such as active spacecraft, astronaut equipment, or space debris. But there are also strange things that humans have placed in space, and of course it was not always intentional.

From dinosaur bones and a big disco ball to musical instruments and gorilla clothing, here are 14 of the strangest things that humans have sent into space, citing Live Science.

Tesla car and its astronaut driver

Elon Musk's Tesla RoadsterThe camera shows SpaceX’s Starman mannequin and Elon Musk’s Tesla Roadster flying above the Earth.

On February 6, 2018, billionaire Elon Musk decided to use his car and a Starman mannequin as a test payload for the first mission. the Falcon Heavy rocket’s first mission, SpaceX sent the billionaire’s cherry Tesla Roadster into space.

The Tesla carrying Starman was originally supposed to be in orbit around Mars, raising concerns that the vehicle could become a potential biothreat and contaminate the planet if it crashed on its surface. But the vehicle drifted too far from the Red Planet and is now trapped in an orbit around the Sun with an orbital period of 557 days.

You can track the car and its passengers in real time on the website you can track. By May 2023, the Tesla Roadster has completed about 3.4 orbits around the sun and traveled more than 4 billion kilometers; This means that the mentioned car has exceeded its warranty more than 73 thousand times. Starman stopped sending images to Earth a long time ago. Astronomers predict that the car and its passengers may have suffered significant damage.

Manhole valves (by atomic explosions)

Nuclear test site in NevadaTest site in Nevada during Operation Plumbab

Between May 28 and October 7, 1957, the US military conducted a series of nuclear tests in the Nevada desert under the name Operation Plumbab. These tests consisted of 29 nuclear explosions, two of which were called Pascal A and Pascal B, conducted underground to test whether radioactive fallout could be contained. Pascal A was conducted on July 26, during which an atomic bomb was detonated at the bottom of a 152-meter-deep hole covered with a 10-centimeter-thick iron cap.

Before his death in 2018, Robert Brunelli, an astrophysicist at Los Alamos National Laboratory in New Mexico and chief scientist for the Pascal experiments, told Business Insider that the force of the explosion sent the manhole into the sky. Brunelli expected the cap to return to Earth, but it was never found.

To investigate what happened to the valve, Brunelli repeated the experiment on August 27, 1957. This time, Brunelli recorded Pascal’s experiment B with a camera that took pictures at a rate of one frame per millisecond. The test showed that the cap can reach a maximum speed of 201 thousand kilometers per hour. This speed is about five times the escape speed of the Earth (the speed required to escape the Earth’s gravitational field) and it shows that both caps have probably made their way into space.

14 strange things we have sent into space

Hair of US Presidents (coming soon)

Goddard Flight RocketCelestis Goddard Flight rocket was launched on May 20, 2011.

On President’s Day 2023 (February 20), Celestis, a Texas-based company that specializes in space burials, announced that it will launch strands of hair from former US presidents on an upcoming mission called Enterprise from Cape Canaveral, Florida.

Genetically verified hair samples from George Washington, John F. Kennedy, Dwight Eisenhower, and Ronald Reagan will be aboard the Enterprise mission, along with the remains of others, including some of the cremated remains of “Star Trek” creator Jen Roddenberry. The spacecraft will eventually go beyond the outer reaches of the solar system.

Giant disco ball

The star of humanityThe Star of Humanity was put on display before it was launched into space.

On January 21, 2018, NASA’s Rocket Lab secretly launched a multi-faceted mirror into space during one of its test flights. This unusual object, which was called the “Star of Humanity”, was about 1 meter wide and had 65 reflective plates on its surface. Humanity’s star quickly orbited the Earth, reflecting enough sunlight to the Earth’s surface to be visible to the naked eye. The Star of Humanity was designed to be a clear symbol and reminder of how vulnerable our place on Earth is.

However, the big disco ball’s time in space was short. The bright orb re-entered Earth’s atmosphere on March 22, two months after launch and about seven months earlier than expected, The Atlantic reported.

The Star of Humanity is not the first disco ball to be launched into space. Project Starshine, operated by the US Naval Research Laboratory, launched three similar objects between 1999 and 2002, each remaining in orbit for more than a year. Japan also launched a mirror-coated satellite named Ajisai in August 1986, which is still in orbit.

14 strange things we have sent into space

Lego pieces

Satoshi FurukawaJapanese astronaut Satoshi Furukawa with his ISS model in 2012

Lego has a long history in space. Construction kits can help children build realistic rocket models. But these famous plastic parts have also reached space and even found their way into the spacecraft that they are modeled on.

In 2012, Japanese astronaut Satoshi Furukawa built a replica of this orbital settlement during his stay on the International Space Station. It took him over two hours to build this model, which is a remarkable feat considering the lack of gravity. In 2019, Lego also sent a conceptual model of the moon base connected to a special balloon into space.

In addition, three custom Lego sculptures are currently orbiting Jupiter on NASA’s Juno probe, which was launched in 2011 to explore this gas giant and its moons. These statues are Juno and Jupiter (Roman gods) as well as Galileo who discovered the four large moons of Jupiter.

Jeff Bezos (and other ordinary citizens)

Jeff BezosBezos vs Blue Origin’s NewShepherd missile

We do not intend to call Jeff Bezos a weird person by including him in this list. The strange thing about his trip to space is that the group that went with him were all ordinary citizens who were doing suborbital flights.

On July 20, 2021, Bezos, along with pioneering aviator Wally Funk, physics student Oliver Damon, and Bezos’ younger brother Mark, were launched aboard Blue Origin’s NewShepherd rocket from the company’s launch site in West Texas. The flight lasted only about ten minutes, but the crew capsule exceeded the Karmann line (the boundary between the Earth’s atmosphere and outer space), which is 100 kilometers above sea level, and finally fell gently to the ground.

But whether Bezos and the rest of the crew, who were ordinary citizens, can be considered astronauts or not, there is a debate and disagreement. Some experts believe that the flight training level of the crew is very low and the lack of expertise deprives them of this title; while others have to make much more effort to achieve it.

Dinosaur bones

Dromisaurus dinosaur skeletonDromisaurus skeleton that belongs to 75 million years ago

Bezos and his companions aren’t the only strange things that Blue Origin has sent into space. On May 20, 2021, the company launched about 200 pieces of dinosaur bones into space on another New Shepherd rocket. These bones with the age of 66 to 70 million years probably belonged to Dromisaurus; A bird-like hunter that was about two meters long and its height from the ground to the hip was 0.6 meters. After returning to Earth, the bones were auctioned off for charity.

But these pieces were not the first dinosaur bones to be sent into space. In 1985, a piece of bone and an eggshell of Mayasura flew into space aboard NASA’s space shuttle Challenger. In 1998, the 210-million-year-old Sylophysis skull flew aboard Challenger’s successor, the Space Shuttle Endeavour. Parts of the Tyrannosaurus rex were also launched into space on the first test flight of NASA’s Orion spacecraft.

14 strange things we have sent into space


Don't be lateTardigrid under the microscope

Many different animals have been sent into space. Some of them you probably already know about, like dogs, replicas, monkeys, and rodents. But many other creatures such as cats, frogs, fruit flies, turtles, fish, and mermaids have also made their way into space.

However, the strangest creatures ever sent into space are probably tardigrades. Tardigrades, also known as water bears, are famous for their ability to survive in very harsh environments.

In 2007, tardigrades also became the first creatures to survive direct exposure to space, according to the European Space Agency. These animals were sealed in the outer part of the Russian spacecraft Photon M3, which was orbiting the Earth for 12 days, and surprisingly, they survived.

A supplementary article published in 2008 in the journal Current Biology showed that 68% of tardigrades managed to survive extreme cold, dehydration, and cosmic ray bombardment.

Gorilla suit

Scott Kelly in a gorilla suitAstronaut Scott Kelly in a gorilla suit on the International Space Station.

Astronauts also seem to enjoy dressing up as animals in space. In 2016, Mark Kelly, a retired astronaut and current US senator, smuggled a gorilla suit to the International Space Station for his twin brother. This led to a much-watched video in which Scott surprises and follows the British astronaut courier team into the modules of the International Space Station. Mark Kelly first tried to smuggle the gorilla suit to Scott in 2015, but the SpaceX Falcon 9 rocket in which the suit was hidden exploded shortly after liftoff.

Skywalker’s lightsaber

Jim Reilly with Luke's lightsaberAstronaut Jim Reilly with Luke Skywalker’s lightsaber and the robot Arto-DeTo before taking this famous device into space.

The original Star Wars trilogy, published between 1977 and 1983, inspired a generation of astronauts and space scientists. Therefore, it is not surprising that one of the most famous props of the movie, Luke Skywalker’s lightsaber, finally made its way into space.

This lightsaber was launched in 2007 by a team of astronauts who delivered the Harmony Module (known as Node 2) to the International Space Station and assembled it. The launch coincided with the 30th anniversary of the first Star Wars film (A New Hope), but the lightsaber was actually Luke’s second lightsaber (Green Sword), which appeared in the third film, Return of the Jedi.

Luke’s lightsaber isn’t the only Star Wars relic sent into space. In 2017, as part of the marketing for The Last Jedi, the second film in the newest trilogy, Disney sent a version of droid BB8 (the orange spherical robot) to astronauts on the International Space Station to play with.

14 strange things we have sent into space

Pizza delivery

In 2001, Pizza Hut became the first company to deliver food into space by sending pizza to the International Space Station on a rocket carrying supplies for astronauts. The recipient of the pizza was Yuri Osachev, who was filmed eating this delicious food with other astronauts.

The record-breaking delivery was a bold marketing move that cost the company more than $1 million ($1.7 million in today’s dollars). But the chefs who cooked the pizza had to take special considerations into account for its unusual journey: extra seasoning was added because astronauts might lose their sense of taste in space, and salami was used instead of pepperoni because it had a longer shelf life. and it was necessary for the pizza to be completely prepared before the launch time.

Interestingly, at the time, NASA astronauts on the International Space Station were prohibited from eating pizza due to the agency’s strict corporate sponsorship rules.

Pizza is not the only food that has been successfully delivered to the International Space Station. In December 2021, Uber Eats announced that it had delivered food to residents through Yusaku Maezawa, a Japanese entrepreneur and space tourist who made a short trip to the space station. This dish included fish with soy paste and chicken with bamboo shoots.

Amelia Earhart watch

Amelia EarhartAmelia Earhart in the cockpit of Lockheed Electra in 1937

Amelia Earhart was an innovative aviator who in 1932 became the first woman to fly solo across the Atlantic Ocean. Amelia Earhart won other firsts and broke several aviation records. This pioneer pilot got lost and probably died in 1937 when he was trying to circumnavigate the earth. The plane and his body were never found.

Earhart’s story inspired many young female aviators and astronauts, including NASA astronaut Shannon Walker, who in 2010 took Earhart’s wristwatch, which she wore on her famous flight across the Atlantic Ocean, to the International Space Station (Earhart wore another watch on her fatal journey). had in hand).

Parts of the Wright Brothers’ airplane

Wright's planeWright brothers airplane on December 17, 1903

Parts of Orville and Wilbur Wright’s first airplane, the Wright Bird, made their way into space on two separate occasions. This biplane, also known as the Kitty Hawk, is famous for being the first aircraft to sustainably fly with humans before crashing. On December 17, 1903, the Wright brothers’ airplane made four short flights, the longest of which lasted only 59 seconds, and the airplane traveled 260 meters during it.

In 1969, Neil Armstrong, the first person to walk on the moon, took pieces of Wright’s plane with him during NASA’s Apollo 11 mission. These pieces, included four pieces of Hopima’s wing fabric and two pieces of its propeller, which Armstrong took to the moon in his “personal preference kit”. The mentioned kit was a small bag that each astronaut could carry with him on the lunar rover.

And in 2021, another piece of fabric landed on Mars with the Perseverance rover and the Ingenuity helicopter. The part belonging to the plane is embedded under the solar panels of the helicopter. This Mars rover has made more than 50 flights on the red planet since then.

14 strange things we have sent into space

Musical Instruments

Jessica MirAstronaut Jessica Meyer playing the saxophone on the International Space Station

For astronauts living on the ISS, spending long periods away from the comforts of Earth can take a psychological toll. To overcome these obstacles, astronauts have taken instruments such as keyboards, guitars, flutes, bells, reeds, saxophones, and even didgeridoo with them into space.

For the most part, playing an instrument in space is like playing it on Earth, but microgravity can cause problems. For example, if astronauts on the International Space Station play a wind instrument such as a flute, they have to curl their legs to avoid being pushed back by the air they blow out of the instrument.

However, there are safety concerns about using instruments such as guitars on the space station, as they are flammable and must therefore be stored safely when not in use. Also, it is expensive to take instruments into space and it costs $4,500 to send each kilogram of cargo into space.

Zero gravity markers

A teddy bear representing zero gravity in the Axiom 2 missionPuppet Rooster, zero gravity indicator of Axiom 2 mission.

A common tradition among astronauts is that they each choose an unusual object as their “zero-gravity marker” and take it into space. As the gravity decreases, this object will hover around them. Examples of these markers include the Einstein doll, Snoopy the Dog, Baby Yoda (Grogo), toy dinosaurs, plushies, the penguin doll, and the Baselighter doll.

Continue Reading


What is the aurora and where can you see them?




Aurora Borealis is an atmospheric phenomenon that occurs due to the collision of energetic particles of the sun with the upper atmosphere of the earth.

What is the aurora and where can you see them?

The energetic particles of the sun collide with the upper atmosphere of the earth at a speed of nearly 27 million kilometers per hour, but the earth’s magnetic field protects us from this attack. The magnetic field of the earth directs the particles towards the poles and auroras are created during a process. This impressive atmospheric phenomenon has amazed scientists and skywatchers for years.

Table of Contents
  • What is the aurora?
  • How is the aurora formed?
  • Why does the aurora borealis consist of different colors?
  • Northern and Southern lights
  • When will we see the aurora borealis?
  • Where can we see the aurora borealis?
  • Auroras on other planets
  • Conclusion

What is the aurora?

The northern lights or aurora borealis are the colorful and eye-catching display of light in the night sky of the Northern Hemisphere. Of course, the auroras of the southern hemisphere are known as the southern lights. The northern and southern lights are both auroras or auroras; Because they appear near the Earth’s magnetic poles.

Northern lights of FinlandThe Northern Lights (Aurora borealis) have lit up the sky of the Gulf of Finland.

How is the aurora formed?

At certain moments, the Sun ejects charged particles from its corona or upper atmosphere, causing the formation of the solar wind. The solar wind collides with the ionosphere, or Earth’s upper atmosphere, and these collisions create tiny sparks that fill the sky with colored light. Auroras move or dance across the sky as billions of sparks form in succession. In the northern hemisphere, this phenomenon is called the northern lights (aurora borealis), while in the southern hemisphere, it is known as the southern lights or aurora australis.

Solar charged particles are guided by the Earth’s magnetic field towards the poles and collide with the Earth’s atmosphere. The shape of the Earth’s magnetic field creates two aurora ellipses above the north and south magnetic poles.

Solar winds and Earth's magnetic fieldEarth’s magnetic field protects us from the solar wind.

Why does the aurora borealis consist of different colors?

Each type of atom or molecule absorbs and emits a unique set of colors. This feature can be compared to the unique fingerprint of humans. In general, the following colors can be seen in the northern lights of the sky:

  • Green: Green is the most common color seen from Earth and is usually created when charged particles collide with oxygen molecules at altitudes of 100 to 300 km.
  • Dark red and pink: Sometimes, the lower edges of the aurora are pink or dark red. This color is the result of nitrogen molecules at an altitude of almost 100 km.
  • Red: At a higher altitude than the Earth’s atmosphere (300-400 km), the collision with oxygen atoms leads to the production of red auroras.
  • Blue and purple: Hydrogen and helium molecules can form blue and purple auroras; But it is usually difficult for the human eye to distinguish these colors from the night sky.
Northern lights in NorwayA rare pink aurora in the Norwegian sky

Northern and Southern lights

On Earth, the Northern Lights counterpart in the Southern Hemisphere is called the Southern Lights. The southern and northern lights have the same physical characteristics and the only difference is in their geographical location. Scientists expect the northern and southern auroras to occur simultaneously during a solar storm, but sometimes they appear delayed.

One of the most difficult aspects of the aurora borealis is comparing the northern and southern lights. The hemispheric asymmetry of the aurora is partly due to the interference of the magnetic field of the sun with the magnetic field of the background, but researches is still ongoing in this field.

An aurora-like event is STEVE (Strong Thermal Ray Enhancement). Like the northern and southern auroras, STEVE is a bright atmospheric phenomenon but slightly different from its auroral counterpart. These rays appear as narrow, discrete curves, are often violet in color, and have a green spike-like structure. STEVE is also seen at lower altitudes near the equator.

According to a study published in 2019 in the journal Geophysical Research Letters, STEVE is the result of two mechanisms: the purple streaks that result from the heating of charged particles in the upper atmosphere, and the spike-like structure that results from the fall of electrons into the atmosphere. The second process is the same as the cause of the aurora borealis, that’s why the STEVE phenomenon is considered a special and combined type of aurora borealis.


When will we see the aurora borealis?

If you’re looking to see the auroras, try not to do it in the summer. You need darkness to see the aurora borealis, and usually, the summer months have the least darkness; The good news is that the 11-year cycle of solar activity is at its peak, and we will likely see sunspots, flares, and coronal mass ejections more frequently than in previous years.

The phenomenon of mass ejection from the solar corona is the most powerful source of pregnancy particles that leave the solar corona or the upper atmosphere of the sun. When the Sun emits these plasma eruptions towards the Earth, amazing auroras are created; But knowing the solar weather alone is not enough to predict the aurora borealis. But you need a clean and clear sky. In the Northern Lights region, the spring and winter seasons are less cloudy than the fall season, so planning a trip between December and April is a good idea. Ideally, it is better to travel at the time of the new moon and make sure you are far enough away from the city lights.

Dress warmly and go watch the Northern Lights between 10 pm and 2 am local time. Periods of aurora activity usually last 30 minutes and occur every two hours. Aurora is an intermittent phenomenon and occurs randomly for short intervals.

You can use Geophysical Institute’s aurora forecasts to find out the extent of aurora activity in your area. It also provides instant information for aurora enthusiasts for a website called Aurorasaurus.

You can even see the aurora borealis without leaving your home. The Canadian Space Agency provides live sky feedback over northwestern Canada during the fall, winter, and spring seasons.

Shafaq next to the radar facilityAurora over the radar facility, Mount Murphy Dome, April 2012

Where can we see the aurora borealis?

But where exactly should we go to see the auroras? People living in Europe can go to Norway, Sweden and Finland. Many of the native people of these regions are fluent in English and there are numerous tours to see the Northern Lights.

Iceland is also a good choice, although the country’s cloudy skies make it difficult to see the aurora borealis on some nights. Also, the country of Russia has a part of Shafaqi in the northern areas, but it is difficult to reach these areas because they lack tourist infrastructure. If you are lucky, you can see aurora borealis in Moscow or St. Petersburg; But you must get away from urban light pollution.

In North America, there are many options for seeing the aurora borealis. Of course, eastern Canada is usually cloudy. Alaska Tours also provides visitors with different types of trips and options.

Read More: The planet Neptune; Everything you need to know

Auroras on other planets

Auroras can also occur on other planets. The prerequisites for the aurora to appear are the atmosphere and the magnetic field. Auroras can be seen in the atmosphere of all gas giant planets like Jupiter and Saturn, which is not strange; Because all these planets have very strong magnetic fields. Surprisingly, auroras can be seen on Venus and Mars despite their weak magnetic fields.

Astronomers have also observed glimpses of auroral activity in other systems. For example, two studies in 2021 reported the discovery of radio waves emitted by red dwarf stars, which are stars smaller and fainter than the Sun. These waves are likely related to a type of inverted aurora that occurs near stars and is caused by particles emitted from nearby planets. Auroras are probably also common in the sky of exoplanets, but we need more detailed and clear observations of these planets.

Jupiter's aurora borealisJupiter’s aurora borealis


Aurora Borealis is an atmospheric phenomenon that occurs due to the collision of energetic particles with gases in the Earth’s atmosphere. Auroras have different colors based on air molecules and can be seen in both North and South Poles. The best times of the year to see the Northern Lights are spring and winter because the sky is clearer and less cloudy at these times, and the best countries are the Nordic countries like Canada, Norway, Sweden, and Finland. However, during rare conditions, auroras can also be seen at lower altitudes, such as England. Northern lights do not occur in Iran due to the great distance from the pole.

Auroras can also be seen in other planets of the solar system, such as gas giants. The possibility of auroras occurring on these planets is high due to the presence of a strong magnetic field. However, auroras have also been observed on planets such as Mars and Venus, which have weak magnetic fields.

Continue Reading