Connect with us

Space

Fermi’s paradox; Where are the extraterrestrials?

Published

on

Fermi's paradox
Fermi’s paradox refers to the contradiction between the high probability of extraterrestrial intelligence in the universe and the fact that we have no conclusive evidence for the existence of such aliens.

Fermi’s paradox; Where are the extraterrestrials?

From NASA’s efforts to scientifically study UFOs or unidentified flying objects to the unveiling of alien bodies in Mexico , these days extraterrestrial intelligence has apparently become a more serious issue for politicians, researchers and the public. Although decades have passed since the first sighting of UFOs in the skies, there is still no evidence that definitively points to their extraterrestrial origin.

We’ve also been listening to space radio signals since about the middle of the last century, maybe for a message from aliens. On the other hand, for decades we have been trying to find extraterrestrial life in its very simple form in our own cosmic neighborhood by sending various spacecraft; But we still haven’t found any sure sign of extraterrestrial life. But how can we be really alone in such a big world?

Table of Contents
  • What is Fermi’s paradox?
  • The abundance of potentially habitable worlds
  • Drake’s equation
  • Large filter
  • Possible answers to Fermi’s paradox
  • Aliens are not advanced yet
  • Life is fragile
  • Intelligent life destroys itself
  • Other answers

What is Fermi’s paradox?

Given that our solar system is very young at approximately 4.5 billion years old compared to the 13.8 billion year old universe, and that interstellar travel may have been relatively easy to achieve over this long period of time, aliens would have to Today they were meeting the earth. But as far as we know, there has been no contact between us and extraterrestrials yet. As a result, the question arises, where are the aliens?

The contradiction between the high probability of the existence of alien intelligence and the lack of evidence for the existence of such aliens is called Fermi’s paradox. This paradox takes its name from Enrico Fermi, a renowned physicist who won the Nobel Prize. Fermi apparently made the above points in 1950 during a casual lunchtime conversation.

Enrico Fermi in his laboratory
Enrico Fermi in his laboratory.

The Search for Extraterrestrial Intelligence (SETI) Institute in California explains the paradox: “Farmey found that any civilization with a moderate level of rocket technology and colonialist motives could quickly colonize the entire galaxy. Over the course of a few tens of millions of years, any star system could be dominated by an empire. Tens of millions of years may seem like a long time, But it is very short compared to the age of the galaxy (which is almost a thousand times longer).”

Fermi died in 1954; As a result, other scientists were responsible for investigating and explaining his idea. One of these people was Michael Hart, an American astrophysicist who published an article in 1975 titled ” An Explanation for the Absence of Extraterrestrials on Earth ” in the Quarterly Journal of the Royal Astronomical Society (RAS). According to some, Hart’s article is the first research that examines Fermi’s paradox; However, it is difficult to prove this claim.

Any civilization with a moderate level of rocket technology and colonialist motives could quickly colonize the entire galaxy.

Hart writes in the abstract of his paper: “We see that no intelligent beings from space currently exist on Earth.” This fact can be explained by the hypothesis that there are no other advanced civilizations in our galaxy.” More research into biochemistry, planet formation, and atmospheres is needed to determine the exact answer, he noted.

Hart argued that if intelligent aliens began their interstellar journey more than two million years ago, they likely visited Earth at some point in our planet’s history. The apparent lack of such visitations, he believes, is most likely due to the lack of intelligent aliens. However, Hart offered four other potential explanations:

  • The aliens never got here because of a physical problem that might be related to astronomy, biology, or engineering that makes space travel impossible.
  • The aliens simply chose never to come to us.
  • Advanced extraterrestrial civilizations emerged too late to reach us.
  • Aliens have visited Earth in the past, But we have not seen them.

Frank Tipler, professor of physics at Tulane University, followed Hart’s argument in a 1980 paper titled ” There Is No Extraterrestrial Intelligence.” The bulk of his paper focuses on how to obtain resources for interstellar travel. According to Tipler, interstellar travel can be achieved by having a self-replicating artificial intelligence that creates multiple copies of itself as it moves from one-star system to another.

Because evidence of such advanced intelligence has never been found on Earth, Tipler argues that we are probably the only intelligent beings in the universe. He also wrote in an article in 1980 that those who believe in extraterrestrial intelligence are similar to UFO enthusiasts; Because they both believe that “we will be saved from ourselves by miraculous interstellar intervention.”

Nowadays, extraterrestrial intelligence is a popular topic, and every year numerous articles from different research groups are published about it. The idea that advanced civilizations may exist beyond Earth has been bolstered by the current revolution in the discovery and study of exoplanets.

The abundance of potentially habitable worlds

A view of an exoplanet facing its star

The universe is incredibly vast and ancient. Data collected by various telescopes show that the observable universe is approximately 92 billion light-years across (and growing faster and faster all the time). Also, separate measurements indicate that the universe is nearly 13.82 billion years old. As a result, alien civilizations have had a lot of time to emerge and expand; But before reaching us, they probably have to cross a big cosmic gulf.

When Fermi came up with his famous idea, the only worlds known to scientists were the planets in our solar system. But in 1992, astronomers saw worlds orbiting a superdense stellar body called a pulsar, and a few years later, the first exoplanet was confirmed around a Sun-like star.

Currently, there are more than five thousand confirmed exoplanets and more are being discovered every year. The large number of alien worlds suggests that life may abound throughout the universe.

Read More: 25 surprising facts about the solar system

The large number of alien worlds suggests that life may abound throughout the universe

Now, with advanced instruments like the James Webb Space Telescope, scientists have found it possible to examine the chemical composition of the atmospheres of some nearby exoplanets. However, “adjacent” is a relative term. The nearest known exoplanet, Proxima b, is located at a distance of 4.2 light years from us, which is approximately 40 trillion kilometers.

The ultimate goal is to find out how likely it is to form rocky planets in the “habitable belt” or “habitable zone” of stars. This region is traditionally defined as the range of orbital distances where water can exist on the surface of the world. However, habitability is not just about water, other factors such as the activity of the host star and the composition of the planet’s atmosphere must also be considered. Also, due to some reasons, the habitable area is considered too simple based on the aforementioned definition. For example, icy moons in our own solar system, such as Jupiter’s Europa and Saturn’s Enceladus, lie far beyond the Sun’s habitable zone; But they may still host life in the seas below their surface.

However, it seems that there are many settlements in the world. For example, a November 2013 study using data from NASA’s Kepler space telescope found that one in five Sun-like stars has a roughly Earth-sized planet orbiting it in the habitable zone. A few months later, Kepler scientists announced the discovery of 715 new worlds. Many of these planets were confirmed using a new technique called “multiple proof” that works in part on the logic of probability. For example, objects that pass in front of their star through the telescope or exert gravitational forces on it, are more likely to be planets instead of companion stars; Because with two stars so close to each other, the whole system is likely to become unstable over time.

Artistic rendering of NASA's Kepler Space Telescope

An artist’s rendering of NASA’s Kepler Space Telescope, an exoplanet finder.

However, Sun-like stars are a minority population in our galaxy. Almost three-quarters of the stars in the Milky Way are small, dim flares known as red dwarfs. Astronomers have found several rocky worlds orbiting in the habitable zone of red dwarfs; Like Proxima B and three planets located in Trappist 1; A system that is about 39 light-years away from Earth and contains a total of seven rocky worlds.

However, it is not known how habitable the planets around red dwarfs are; Because these stars are extremely unstable especially when they are young. As a result, their stellar eruptions may quickly destroy the nascent atmospheres of their neighboring planets, making it very difficult for life to flourish. Scientists say more studies are needed to better understand these stars and the ability of life to survive around them.

Researchers are acquiring more tools to study the stars. For example, NASA’s Passing Exoplanet Mapper satellite was successfully launched in April 2018, tasked with discovering extrasolar worlds as a successor to the Kepler telescope. Also, the James Webb Space Telescope, launched in December 2021, will study biological traces in the atmospheres of alien planets, among other tasks. The European Space Agency’s PLATO (Planetary Transit and Stellar Oscillation) spacecraft is also expected to launch in 2026.

Sun-like stars are a minority population in our galaxy

Three massive ground-based observatories, including the Extremely Large Telescope, the Giant Magellan Telescope, and the 30-meter telescope, which is powerful enough to probe the atmospheres of exoplanets, are slated to begin operating by the end of this decade. On the other hand, one of the more ambitious projects known as “Bractro Starshot” wants to study Proxima b and other nearby worlds with an array of tiny laser-guided nanoprobes. If the technology development process goes well, the first such interstellar spacecraft could be launched by around 2050.

These spacecraft and probes will help scientists improve their relatively rudimentary understanding of astrobiology. For example, we still don’t know if there are life-hosting worlds in our cosmic neighborhood. Studies conducted on Earth indicate that microbes can survive in unfavorable environments; A finding that suggests microbial life may exist on Mars, Europa, Enceladus, or Saturn’s giant moon Titan. But we haven’t explored either of those worlds enough to know for sure.

Drake’s equation

Despite the explanations given, Fermi’s paradox paints a much larger picture of microbes. To resolve this paradox, we need to know not only how common life is on alien planets, but also to what extent those extraterrestrials acquire the ability or desire to communicate with other intelligent life forms or to venture among the stars.

The number of intelligent and detectable alien civilizations is estimated by the Drake equation. According to the Seti Institute, the equation is written as “N = R* • fp • ne • fl • fi • fc • L” and has the following variables:

  • N: number of Milky Way civilizations whose electromagnetic emissions can be detected.
  • R*: the rate of formation of stars suitable for the development of intelligent life (number per year).
  • fp: fraction of those stars with planetary systems.
  • ne: the number of planets in each solar system with habitable environments.
  • fl: fraction of suitable planets where life appears.
  • fi: Fraction of life-bearing planets in which intelligent life arises.
  • fc: fraction of civilizations with technologies capable of producing recognizable signs of their existence.
  • L: average length of time such civilizations produce such signs (years).

None of the values ​​of Drake’s equation are currently known with certainty; This means that it is difficult to predict the number of civilizations willing to communicate. As a result, the Fermi paradox is fertile ground for speculation, and scientists and laypeople alike have come up with hundreds of possible explanations over the years.

Copy the link

Large filter

Asteroid hitting the earth

The large filter is a general idea that attempts to explain Fermi’s paradox. According to this hypothesis, intelligent interstellar life must take many critical steps to evolve, and at least one of these steps must be highly impossible. In fact, the large filter assumes that there is at least one very large barrier that virtually no species can pass to the next stage. But in order to become a truly advanced and space-faring civilization, what important obstacles must be overcome? Here are a few things:

  • A planet capable of harboring life must form in the habitable zone of a star.
  • Life must grow on that planet.
  • Life forms must be able to reproduce using molecules such as DNA or RNA.
  • Simple cells (prokaryotes) must evolve into more complex cells (eukaryotes).
  • Multicellular organisms must grow.
  • Sexual reproduction, which greatly increases genetic diversity, must occur.
  • Complex organisms capable of using tools must evolve.
  • Those beings must develop the advanced technology needed to colonize space. (This stage is roughly where humans are today.)
  • The spacefaring species must continue to colonize other worlds and star systems while avoiding their own destruction.

The assumption of the large filter is that there is at least one very large barrier that virtually no species can pass.

But which stage is the big filter? Unfortunately, no one knows. Maybe the rarity of life is actually a big filter. Maybe life is common, But most organisms do not evolve beyond unicellularity. It may be the great filter of annihilation technology that wipes out its advanced creators. It is possible that an external factor such as the impact of a stray asteroid is the cause of the destruction of life.

If we have passed the great filter, we can hope for our future. Maybe a wise man is the kind that can colonize the world. But if the big filter is still ahead, we’re probably doomed. In the next section, we mention some hypothetical explanations for Fermi’s paradox.

Possible answers to Fermi’s paradox

A very wide range of answers can be considered for Fermi’s paradox. Probably the most obvious and likely answer is that we haven’t looked hard enough for alien life, and interstellar travel is difficult. As mentioned, the first planets beyond the solar system were discovered just 30 years ago; As a result, in the field of exploring alien worlds, we are still in the most elementary stage.

We have yet to find many planets that look exactly like Earth and orbit a Sun-like star. However, even if we were to achieve such success, the distance between the star systems is too great, and travel to them would be extremely difficult. For example, the closest star system to us, Alpha Centauri, is four light years away from Earth. For comparison, the distance from Earth to Neptune is only 0.0005 light years; As a result, it takes tens of years to reach the nearest neighboring star with current technology.

Aliens are not advanced yet

In 2015, scientists analyzing data from the Hubble Space Telescope and the Kepler Space Telescope concluded that Earth was one of the first worlds in the universe to harbor life. According to the researchers, only 8 percent of all potentially habitable worlds that will emerge in the entire lifetime of the universe existed when Earth formed about 4.5 billion years ago. Consequently, this is one possible explanation for the paradox: aliens will come; But not now.

Life is fragile

Perhaps life is too fragile to last long. A 2016 study in the journal Astrobiology showed that the early part of a rocky planet’s history could be very favorable for life; This means that life may usually emerge 500 million years or more after the planet cooled and liquid water became available. Our own Earth history seems to support this conclusion. There is (controversial) evidence that life appeared on Earth about 4.1 billion years ago, and was definitely established by 3.8 billion years ago. But those good days may not last long as a result of the greenhouse effect (as happened on Venus long ago) or other climate changes.

Perhaps life is too fragile to last long

“Between initial heat pulses, freezing, unstable content changes, and out-of-control positive feedbacks, maintaining life on a rocky, wet young planet in the habitable zone is like trying to ride a wild bull,” said Aditya Chopra and Charlie Lineweaver, researchers of the 2016 study. Life often falls.” The authors add that life may be rare in the universe; not because it is difficult to start, but because it is difficult to maintain habitable environments during the first billion years.

Intelligent life destroys itself

Conditions leading to the collapse of life may occur much later. Some thinkers believe that civilizations may self-destruct shortly after they become technologically capable. Again, Earth supports this hypothesis: humanity came alarmingly close to nuclear war during the 1962 Cuban Missile Crisis. Also, we are probably destroying ourselves and many other types of terrestrial life right now through climate change caused by our own activities or the development of dangerous technologies such as artificial intelligence.

Other Answers

There are many other factors to consider. For example, Alan Stern, a planetary scientist and director of NASA’s New Horizons mission, believes that buried oceans, such as the seas of Enceladus and Europa, are likely the most common environments for life in the Milky Way. As a result, it seems unlikely that the evolved beings in such regions would achieve the necessary technology to build spacecraft. In fact, many of them may not even know that there are other worlds to explore.

Alien psychology can also be effective. For example, maybe there are many advanced alien civilizations in the world; But most of them don’t want to communicate with us or visit Earth. Perhaps Earth and its inhabitants are simply not interesting enough for aliens to waste their time on, and until humanity shows enough intelligence and competence to be accepted into the “galactic club”, it will not attract the attention of extraterrestrials.

Most intelligent aliens may tend to be silent as a general rule; Because they are worried that contact with their cosmic neighbors will lead them to slavery or death. Some researchers, including the late Stephen Hawking, have cited such possibilities with the argument that humans should not actively show their presence.

Most intelligent aliens may tend to be silent as a general rule

In addition to all the aforementioned assumptions, finding intelligent aliens in a very, very vast and ancient universe is associated with complex logistical problems. Mankind only appeared on Earth 200,000 years ago and only started listening to possible radio signals from extraterrestrials in 1960. As a result, the probability that it overlaps with a recognizable alien civilization in terms of time and place does not seem very high.

Most researchers say that there is probably no single solution to Fermi’s paradox. A combination of factors, including perhaps some of the ones discussed above, is probably responsible for the great silence that currently reigns in the world. The nature of those factors will probably be more clearly noticed relatively soon.

For example, suppose scientists find evidence of ancient or current microbial life on Mars, Europa, or any other body in our own solar system. The discovery of such creatures near the Earth, which are completely different from terrestrial life, speaks of the “Second Genesis” and definitely shows the commonness of life throughout the universe. At that point, researchers can cross off a possible explanation on the long list of explanations for Fermi’s paradox. 

Space

Why is it still difficult to land on the moon?

Published

on

By

moon
More than half a century after the first spacecraft to reach the moon, a successful landing on Earth’s only moon remains a challenge for space agencies and private companies.

Why is it still difficult to land on the moon?

This year, the private company Spacel and the Indian Space Organization both met tragic ends when they tried to land their spacecraft on the surface of the moon. Despite the astonishing leaps made in recent decades in computing, artificial intelligence and other technologies, it seems that landing on the moon should be easier now; But recent setbacks show that we still have a long way to go with safe and trouble-free landings on the surface of Earth’s only moon.

50 years after sending the first man to the surface of the moon, the question arises as to why safely landing a spacecraft on Earth’s nearest cosmic neighbor is still a difficult task for space agencies and private space companies. Stay with Zoomit to check the answer to this question.

Why is the lunar landing associated with 15 minutes of fear?

Despite the complexities of any space mission, sending an object from Earth into orbit around the moon today is easy. Christopher Riley, the director of the documentary film In the Shadow of the Moon produced in 2007 and the author of the book Where We Stood (2019), both of which are about the history of the Apollo 11 mission, explained the reasons for the difficulty of landing on the moon in an interview with Digital Trends. is According to him: “Today, the paths between the Earth and the Moon are well known, and it is easy to predict them and fly inside them.”

Chandrayaan-2
Chandrayaan 2 mission launch

However, the real challenge is getting the spacecraft out of orbit and landing it on the lunar surface; Because there is a delay in the communication between the Earth and the Moon, and the people in the control room who are present on the Earth cannot manually control the spacecraft in order to land it safely on the Moon. As a result, the spacecraft must descend automatically, and to do so, it will fire its descent engines to slow its speed from thousands of kilometers per hour to about one meter per second, in order to make a safe landing on the lunar surface.

For this reason, the director of the Indian Space Research Organization (ISRO), who was trying to land the Vikram lander last month, described the final descent of the spacecraft as “frightening 15 minutes”; Because as soon as the spacecraft enters the landing stage, the control of its status is out of the hands of the mission control members. They can only watch the spacecraft land and hope that everything goes according to plan, that hundreds of commands are executed correctly, and that the automatic landing systems gently bring the spacecraft closer to the surface of the moon.

The Great Unknown: The Landing Surface

One of the biggest challenges in the final descent phase is identifying the type of landing site. Despite the availability of instruments such as the Lunar Reconnaissance Orbiter (LRO) that can capture amazing views of the lunar surface, it is still difficult to know what kind of surface the spacecraft will encounter when it lands on the moon.

Beresheet crash site
Left: Breshit crash site. Right: The ratio of the before and after images highlights the occurrence of minor changes in surface brightness.

Leonard David, author of Moon Fever: The New Space Race (2019) and veteran space reporter, says:

The Lunar Reconnaissance Orbiter is a very valuable asset that has performed really well over the years; But when you get a few meters above the surface of the moon, complications appear that cannot be seen even with the very powerful LRO camera.

Even today, despite the imaging data available, “some landing sites still have unknown remains,” Riley says. He notes that the Apollo 11 mission included an advantage that today’s unmanned landers lack, which is the presence of an astronaut’s observer’s eyes that can closely observe the surface of the spacecraft’s landing site. As you probably know, in the mission that led to the landing of the first man on the surface of the moon, the Eagle computer was guiding the spacecraft to a place full of boulders; But to avoid hitting the rocky surface of the moon, Armstrong took control of the spacecraft himself and landed it on a flat surface.

Apollo 11 / Apollo 11

The uneven surface of the landing site had caused many problems in previous lunar missions such as Apollo 15. In this mission, the astronauts were told that as soon as the spacecraft touched the surface of the moon, they should turn off the engines to prevent dust from being sucked in and the risk of a return explosion. But the Apollo 15 spacecraft landed in a crater, and because of this, one of its legs came into contact with the surface earlier than the others. When the crew shut down the engines, the spacecraft, moving at a speed of 1.2 meters per second, experienced a hard landing. The lander landed at an oblique angle, and although it eventually landed safely, it nearly overturned, causing a fatal disaster.

  • Half a century after Apollo 11; How did the great human leap happen?
  • dust storms; The nightmare of space missions to the moon

The difficult landing of Apollo 15 introduced another complicating factor in lunar landings: lunar dust. The Earth’s moon is covered with dust that is thrown into the air by any movement and sticks to everything it comes in contact with. As the spacecraft approaches the surface of the moon, huge plumes of dust are kicked up that limit the field of view and endanger the spacecraft’s electronics and other systems. We still do not have a solution to deal with the dust problem.

An achievement that has been achieved before

Another reason why the moon landing remains a challenge is that gaining public support for lunar projects seems difficult. Referring to Neil Armstrong and Buzz Aldrin, the two astronauts who walked on the moon during the Apollo 11 mission, David says, “We convinced ourselves that we had sent Neil and Buzz [to the surface of the moon]; “As a result, when it comes to lunar missions, people may say we’ve been there before and we’ve had this success.”

Apollo 11 / Apollo 11

But in reality, our understanding of the moon is still very little, especially in relation to long-term missions. Now, with a 50-year gap between the Apollo missions and NASA’s upcoming Artemis project, the knowledge gained has been lost as engineers and specialists retire. David says:

We need to recover our ability to travel into deep space. We haven’t gone beyond near-Earth orbit since Apollo 17 and since 1972. NASA is no longer the same organization that put men on the moon, and there is a whole new generation of mission operators.

The importance of redundancy

As the first private spacecraft entered into orbit around the moon, the Space project was of considerable importance; But its failure to land smoothly on the surface of the moon made the achievement of landing on the surface of the moon still remain in the hands of governments. However, we can expect more private companies, such as Jeff Bezos ‘ Blue Origin, which is developing its lunar lander, to target the moon in the future. According to Elon Musk, even the giant SpaceX Starship spacecraft, which is being built with the ultimate goal of sending a human mission to Mars , can also land on the moon.

According to David, private companies’ participation in lunar landings has advantages such as increased innovation. However, companies are under pressure to save money, and this can lead to a lack of redundancy and support systems that are essential in the event of errors and malfunctions. Lunar rovers typically include two or even three layers of support systems. David is concerned that private companies will be encouraged to eliminate these redundancies in order to cut costs and save money.

Crew Dragon
Crew Dragon SpaceX passenger capsule

“We saw Elon Musk’s Dragon capsule catch fire after a failed test on the stand,” says David, referring to the explosion of the SpaceX spacecraft in April, which had no crew on board. “This accident was kind of a wake-up call about how unpredictable the performance of spacecraft can be.” David compared the Crew Dragon incident to the Apollo 1 disaster, which killed three NASA astronauts during a test launch in 1967.

Another problem related to the lack of redundancy systems is the lack of information needed when an error occurs. As for the recent landings, it seems that the SpaceX crash was caused by human error; however, it is not clear what caused the failure of Chandrayaan 2 in the calm landing, and it is possible that without the necessary systems to record and send information to the lander, we will never find out the main reason for the failure of this mission. Without the required data, it becomes much more difficult to prevent problems from reoccurring in the future.

The future of lunar landings

Currently, many projects are underway to facilitate future moon landings. Ultimately, we need to be able to build the necessary infrastructure for a long-term stay on the moon.

Moonrise Project
Conceptual design of Moonrise technology on the moon. On the left side is the Alina lunar module, and on the right side, the lunar rover equipped with Moonrise technology melts the lunar soil with the help of a laser.

If we can make long-term stays on the moon possible, or even build a permanent base there, landing spacecraft on the lunar surface will be much easier. By constructing the landing sites, a flat, safe, and free surface of unknown debris can be created for the landing of surface occupants. For example, researchers are currently conducting research at NASA’s Kennedy Space Center to investigate the feasibility of using microwaves to melt the lunar soil (regolith) and turn it into a hard foundation so that it can be used as a landing and launch site. The European Space Agency is also investigating how to use 3D printing to create landing sites and other infrastructure on the moon.

Read more: Europa Clipper, NASA’s flagship probe was launched

Other ideas include the use of lidar remote sensing systems, which are similar to radar systems; But instead of radio waves, it uses lasers to land the spacecraft. Lidar technology provides more accurate readings and uses a network of GPS satellites to help guide the spacecraft during landing.

The problem of public support

As important as technology is, public interest and support are essential to the success of the lunar landing program. “Apollo had enormous resources that are perhaps only comparable today to China’s space program,” says Riley. “Remember that Apollo carried the best computer imaginable, the human brain.” It goes without saying that there is an element of luck involved in every landing.

Mike Pence
US Vice President Mike Pence speaking at the 50th anniversary of the Apollo 11 mission

Finally, there is the question of what kind of failure is acceptable for people. David says:

I think we have to be serious about the fact that we’re probably going to lose people. There is a serious possibility that the manned lunar lander will crash and kill the astronauts inside. The American people continued to support NASA despite the failures and bad luck of the Apollo program, But at that time there was a lot of pressure to compete with the Soviet Union. Without the bipolar atmosphere of the Cold War and the space race, would people still support missions with human lives in between?

Continue Reading

Space

Europa Clipper, NASA’s flagship probe was launched

Published

on

By

Europa Clipper
The highly anticipated Europa Clipper probe has finally begun its long journey to uncover the mysteries of Europa, Jupiter’s moon, by launching aboard a SpaceX Falcon Heavy rocket.

Europa Clipper, NASA’s flagship probe was launched

After years of waiting, NASA’s Europa Clipper probe was finally launched on Monday at 7:36 p.m. Iran time from the Kennedy Space Center on top of SpaceX’s Falcon Heavy rocket and began a major astrobiology mission to Europa, the potentially habitable moon of Jupiter.

As SpaceX’s massive rocket powered by 27 powerful Merlin engines lifted off from pad 39A, NASA live broadcast reporter Dron Neal said, “The launch of Falcon Heavy with Europa Clipper will reveal the secrets of the vast ocean beneath the icy crust of Europa, Jupiter’s moon. It has been hidden, it will reveal.”

The engines of the two side boosters of the Falcon Heavy were shut down and separated from the central booster approximately three minutes after the flight. The central booster continued to fly for another minute, and then in the fourth minute of the launch, the separation of the upper stage from the first stage was confirmed. Finally, 58 minutes later, Europa Clipper was injected into interplanetary orbit as scheduled. A few minutes later, the mission team made contact with the probe, and people in the control room cheered and applauded.

Falcon Heavy’s unique launch

The launch of NASA’s new probe was delayed due to some mishaps. NASA and SpaceX initially planned to launch the Europa Clipper mission on Thursday, October 10; But with powerful Hurricane Milton hitting Florida’s Gulf Coast on Wednesday evening, a delay in the launch became inevitable. NASA shut down Kennedy Space Center to deal with the storm, and Europa Clipper was placed inside SpaceX’s hangar near Launch Pad 39A.

The recent launch was Falcon Heavy’s 11th flight overall and its second interplanetary mission. Also, this was the first flight of the Falcon Heavy, when all three boosters of the first stage of the rocket were deployed.

Typically, the Falcon Heavy and Falcon 9 first-stage boosters store enough fuel to perform landing maneuvers for recovery and reuse in the future; But Europa Clipper needed all the power that Falcon Heavy could provide in order to make it on its way to the Jupiter system.

A long way to the launch pad

In late 2015, the US Congress directed NASA to launch Europa Clipper using the Space Launch System (SLS), NASA’s massive rocket. SLS was still under construction at the time and was several years away from reaching the launch pad. The delay in completing the construction of this powerful rocket and NASA’s need to assign at least the first three versions of SLS to the Artemis lunar mission caused the Europa Clipper launch date to be in an aura of uncertainty.

In the 2021 House budget draft for NASA, the agency was directed to launch Europa Clipper by 2025 and, if possible, with SLS. However, due to the unavailability of the Space Launch System, NASA had to go to SpaceX’s Falcon Heavy. This decision was not without cost. As the most powerful rocket ever used in an operational mission, SLS can send Europa Clipper directly to the Jupiter system in less than three years.

Europa Clipper will use the gravitational assistance of Mars and Earth on its way to the Jupiter system

Now, even in Falcon Heavy’s fully disposable mode, the Clipper’s trip to Europe takes almost twice as long. The probe should make a flyby of Mars in February 2025 and a flyby of Earth in December 2026 to gain enough speed to reach its destination in April 2030.

Missile problems were not the only obstacles facing Europa Clipper on its way to the launch pad. For example, the rising costs of this five billion dollar probe forced NASA to cancel the construction of one of the probe’s science instruments. This instrument, named “Identification of Europa’s internal features using a magnetometer” (ICEMAG), was designed to measure Europa’s magnetic field.

Then in May 2024, NASA found that transistors similar to those used in Europa Clipper, which are responsible for regulating the probe’s electricity, were “failing at lower-than-expected radiation doses.” Following this discovery, NASA conducted more tests on the transistors and finally concluded in late August that these components could support the initial mission in the radiation-rich environment around Jupiter.

Ambitious mission to a fascinating moon

Imaging from the Europa Clipper probe over Europa, Jupiter's oceanic moon

NASA/Jet Propulsion Laboratory-Caltech

Europa Clipper is one of NASA’s most exciting and ambitious flagship missions, and it has impressive features. For example, the mission probe is the largest spacecraft NASA has ever built for a planetary mission. Europa Clipper weighed almost 6,000 kg at the time of launch and will be more than 30 meters long (bigger than a basketball court) by opening its huge solar panels in space.

Clipper’s Europa destination is also a prominent location: Europa, one of Jupiter’s four Galilean moons. The moon is covered with an icy outer shell, which scientists believe hides a vast ocean of salty liquid water. For this reason, Europa is considered one of the best places in the solar system to support alien life.

In early 2012, studies began to look for potential plumes of water rising from Europa’s surface. Some researchers theorize that those water columns and vents from which the columns protrude may contain evidence of life living beneath the moon’s icy crust. However, NASA scientists have made it clear that Europa Clipper is not looking for extraterrestrial life in Europa; Rather, this probe will only investigate the potential of the submoon water environment to support life.

“If there’s life on Europa, it’s going to be under the ocean,” Bonnie Buratti, senior Europa Clipper scientist at NASA’s Jet Propulsion Laboratory, said in September. As a result, we cannot see it.” “We will be looking for organic chemicals that are prerequisites for life on the surface of the moon,” Borrati added. There are things we can observe; such as DNA or RNA; But we don’t expect to see them. As a result, [the probe] is only looking for habitable environments and evidence for the ingredients of life, rather than life itself.”

NASA scientists have made it clear that Europa Clipper is not looking for extraterrestrial life in Europa

Europa Clipper will collect data using a suite of nine scientific instruments, including visible and thermal cameras, several spectrometers, and special equipment to identify Europa’s magnetic environment. As stated on NASA’s Europa Clipper page, the probe will help scientists achieve three main goals:

  • Determining the thickness of Europa’s ice sheet and understanding how Europa’s ocean interacts with the lunar surface.
  • Investigating the composition of Europa’s ocean to determine whether it has the materials necessary to form and sustain life.
  • Studying the formation of Europe’s surface features and discovering signs of recent geological activities; such as the sliding of crustal plates or the discharge of water columns in space.

Europa Clipper also transports Earth’s culture to the Solar System. A piece called “In Praise of Mystery: A Poem for Europe” by Edda Lemon, a famous American poet, is engraved in the artist’s own handwriting on a metal plate. In addition, the probe carries a coin-sized chip that contains the names of 2.6 million inhabitants of planet Earth.

6-year journey

Illustration of Europe Clipper over Europe

Johns Hopkins University Applied Physics

If all goes according to plan, Europa Clipper will enter Jupiter’s orbit in April 2030. When the probe gets there, it will use up 50-60% of its 2,722 kg of fuel by performing an injection maneuver for 6-8 hours.

The injection maneuver puts Europa Clipper in an elliptical orbit around the gas giant. A series of long maneuvers will then be performed to align the trajectory so that the probe can fly by Europa more than 45 times and study it closely. In fact, Europa Clipper will remain around Jupiter throughout its mission; Because according to the launch environment of Europa, it will be very dangerous for the spacecraft to go around the moon.

If all goes according to plan, Europa Clipper will enter Jupiter’s orbit in April 2030

The first flight over Europe will not take place before the spring of 2031. NASA will use the first pass to make further corrections to Europa Clipper’s trajectory in preparation for the probe’s first science mission. With the start of scientific flybys in May 2031, Europa Clipper will aim its array of sensors towards the far hemisphere from Jupiter and will approach the surface of the moon up to 25 km. The second science campaign will begin two years later, in May 2033, in the Jupiter-facing hemisphere of Europa.

The end of the Europa Clipper mission is set for September 2034. At that time, NASA will crash the spacecraft into Ganymede, another Galilean moon of Jupiter. This disposal strategy was chosen because Ganymede is considered a relatively poor candidate to host life, and the mission team wanted to make sure they did not contaminate potentially life-hosting Europa with terrestrial microbes.

Continue Reading

Space

Dark matter and ordinary matter can interact without gravity!

Published

on

By

dark matter
Dark matter and ordinary matter can interact without gravity! Dark matter, which has five times the mass of normal matter, helps hold galaxies together and explains the puzzling motions of stars. Now a new study has shown that these two substances can interact with each other without the presence of gravity.

Dark matter and ordinary matter can interact without gravity!

Why is dark matter associated with the adjective “dark”? Is it because it harbors some evil forces of the universe or hidden secrets that scientists don’t want us to know? No, it is not. Such fanciful assumptions may sound appealing to a conspiracy theorist, but they are far from the truth.

Dark matter is called dark because it does not interact with light. So when dark matter and light collide, they pass each other. This is also why scientists have not been able to detect dark matter until now; it does not react to light.

Although it has mass and mass creates gravity, this means that dark matter can interact with normal matter and vice versa. Such interactions are rare, and gravity is the only known force that causes these two forms of matter to interact.

However, a new study suggests that dark matter and ordinary matter interact in ways other than gravity.

If this theory is correct, it shows that our existing models of dark matter are somewhat wrong. In addition, it can lead to the development of new and better tools for the detection of dark matter.

Read more: There is more than one way for planets to be born

A new missing link between dark and ordinary matter

Dark matter is believed to have about five times the mass of normal matter in our universe, which helps hold galaxies together and explains some of the motions of stars that don’t make sense based on the presence of visible matter alone.

For example, one of the strongest lines of evidence for the existence of dark matter is the observation of rotation curves in galaxies, which show that stars at the outer edges of spiral galaxies rotate at rates similar to those near the center. These observations indicate the presence of an invisible mass.

Also, for their study, the researchers studied six ultra-dim dwarf (UFD) galaxies located near the Milky Way. However, in terms of their mass, these galaxies have fewer stars than they should. This means they are mostly made up of dark matter.

According to the researchers, if dark matter and normal matter interact only through gravity, the stars in these UFDs should be denser in the centers and more spread out toward the edges of the galaxies. However, if they interact in other ways, the star distribution looks different.

The authors of the study ran computer simulations to investigate both possibilities. When they tested this for all six ultra-dim dwarf (UFD) galaxies, they found that the distribution of stars was uniform, meaning that the stars were spread evenly across the galaxies.

This was in contrast to what is generally observed for gravitational interactions between dark matter and normal matter.

What causes this interaction?

The results of the simulations showed that gravity is not the only force that can make dark matter and normal matter interact. Such an interaction has never been observed before, and it could change our understanding of dark matter and dark energy.

However, this study has a major limitation. What caused the interaction between the two forms of matter is still a mystery. While the current study provides tantalizing hints of a novel interaction, its exact nature and underlying causes remain unknown. Hopefully, further research will clarify the details of such interactions.

This study was published in The Astrophysical Journal Letters.

Continue Reading

Popular