Connect with us


25 surprising facts about the solar system



25 surprising facts about the solar system

From the vastness of the solar system and its strange moons to the ubiquitous presence of water and organic molecules, our solar neighborhood is full of surprising facts.

25 surprising facts about the solar system

Our solar system includes the sun and everything that revolves around it; Among the eight planets that we have all been familiar with since elementary school. But the main planets, despite their diversity and charm, are only part of the wonders of our cosmic neighborhood. Planet Earth’s neighbors in space include comets, asteroids, dwarf planets, mysterious moons, and a series of phenomena so strange and alien that they are not easily explained.

Table of Contents

  • 1. The solar system is very, very large
  • 2. Even our neighborhood is very big
  • 3. Uranus orbits the Sun sideways
  • 4. Jupiter’s moon Io is full of volcanic eruptions
  • 5. Mars has a volcano that is bigger than the entire state of Hawaii
  • 6. The biggest canyon on Mars could take Earth’s Grand Canyon in one bite
  • 7. Venus is swept by super-powerful winds
  • 8. Water is everywhere
  • 9. Human spacecraft have visited all planets
  • 10. Pollutants may be transported to habitable areas
  • 11. Mercury is shrinking
  • 12. Pluto has mountains
  • 13. Pluto has a strange atmosphere
  • 14. Rings are more common than you might think
  • 15. Jupiter’s Great Red Spot is shrinking
  • 16. Most comets are detected with solar telescopes
  • 17. The ninth planet
  • 18. Neptune is very hot
  • 19. Earth’s Van Allen Belt is much stranger than expected
  • 20. What happened to Miranda?
  • 21. Saturn’s yin-yang moon
  • 22. Titan has a liquid cycle, But there is no water involved
  • 23. Organic molecules are everywhere
  • 24. Saturn has a hexagonal storm
  • 25. The atmosphere of the Sun is much hotter than the surface of the Sun

From fascinating glaciers on the dwarf planet Pluto and a deep valley the size of the United States on the Red Planet to the possibility of a giant, undiscovered world known as the ninth planet beyond Neptune, the space around Earth is full of wonders. Stay tuned to Zoomit for some of the weirdest facts about the solar system.

25 surprising facts about the solar system

1. The solar system is extremely largeOort cloud and Kuiper belt

By including the Oort cloud, our star’s realm becomes much, much larger.

NASA’s Voyager 1 spacecraft began its mission in 1977, and more than three decades later in 2012, it became the first man-made object to enter interstellar space by passing through the heliopause or heliosphere boundary. The heliopause is the region where the magnetic fields and most of the particles emitted from the sun disappear.

However, according to NASA, “If we define our solar system as the Sun and primarily everything that orbits it, Voyager 1 will continue to remain within [dominance of] the Sun until, in the next 14,000 to 28,000 years, Get out of the Everett cloud. 

2. Even our neighborhood is very big

Visualization of the placement of all the planets of the solar system between the Earth and the Moon

Did you know that all the planets in the solar system can fit between the Earth and the Moon?

Depending on how accurately you do the math and how you arrange it, all the planets in the solar system can fit between the Earth and the Moon. The distance between the Earth and the Moon varies as does the diameter of each of them. Our planet and its moon are wider at their equator; As a result, Saturn or Jupiter or both must be slightly tilted to the sides to fit between them. However, if you lined up the planets from pole to pole, they would barely fit between us and our only space companion, blocking the sky with their rings and huge gas masses.

The moon is the farthest object humans have ever traveled to, and depending on how you think about it, it’s both amazingly far and incredibly close. Eight giant planets of the solar system can fit in the space between us and the moon, and yet, the distance from the Earth to the sun is more than 390 times the distance from the Earth to the moon.

Scientists use the approximate distance from the Earth to the Sun, known as an astronomical unit, or AU, to compare distances within the solar system. Jupiter is approximately 5.2 AU from the Sun and Neptune is 30.07 AU or approximately 30 times the distance from Earth to the Sun from our star.

 3. Uranus orbits the sun sideways

Composite image of the planet Uranus and its rings

This composite image of the two hemispheres of Uranus was obtained with the adaptive optics of the Keck telescope. The north pole of the planet is at 4 o’clock.

In solar system models, Uranus usually appears as a blue ball with no special features; But this gas giant, located in the outer limits of the solar system, is very strange from a global perspective. First of all, the seventh planet of the solar system has a very extreme axial deviation of 97.77 degrees; This means that it rotates sideways and completes its orbit around the sun like a rolling ball. The most likely explanation for the planet’s unusual orientation is a catastrophic collision with another body in the distant past.

The tilt of Uranus has caused NASA to witness the most unusual seasons in the solar system on this planet. In about a quarter of each Uranian year (equivalent to 21 Earth years), the Sun shines directly on the north or south pole of the planet; This situation means that half of Uranus does not see the Sun at all for more than two Earth decades.

Scientists have been monitoring these temperate seasons on Uranus and predicting that they will witness unusual weather on this planet at the moment of the 2007 equinox. But it was seven years later that unexpected violent storms occurred in the atmosphere of Uranus, and the planet became a bigger mystery than ever. 

4. Jupitor’s moon Io is full of volcanic eruptions

The eruption of the volcano in Io from the view of the Galileo spacecraft

Io has hundreds of active volcanoes. In this image, the moment of the spectacular eruption was captured by NASA’s Galileo spacecraft as it flew over the moon.

Jupiter’s moon Io may seem like a world of surprise compared to Earth’s silent moon. This Galilean moon, which is slightly smaller than the Earth’s moon, has hundreds of volcanoes and is considered the most active moon in the solar system. Io sends masses of sulfur smoke up to 300 km into its atmosphere. According to NASA, Io’s volcanoes emit a ton of gas and particles every second into space near Jupiter.

The eruptive nature of Io is due to the enormous forces that this moon is exposed to. Trapped in Jupiter’s gravitational well and magnetic field, Io experiences constant tension and relaxation as it moves away from the planet and approaches it, gaining enough energy for volcanic activity.

Scientists are still trying to figure out how heat is distributed inside Io. However, it is difficult to predict the location of volcanoes using only scientific models. 

5. Mars has a volcano that is bigger than the entire state of Hawaii

Mount Olympus on Mars

Mount Olympus is the largest volcano discovered in the solar system.

Although Mars seems peaceful now, giant volcanoes once ruled the planet’s surface. One of these volcanoes is Mount Olympus, the largest volcano discovered in the solar system. With a width of 602 km, Olympus can be compared to the state of Arizona in America. The height of this volcano is 25 km or three times higher than Everest, the highest mountain on earth. According to NASA, Olympus is 100 times larger in volume than Mauna Loa, the largest volcano on Earth in Hawaii.

Scientists suspect that volcanoes can grow to such enormous sizes on Mars because of Mars’ weak gravity compared to Earth’s. Moreover, while the earth’s crust is constantly moving, the crust of Mars is probably stationary based on the belief of some researchers. If the surface of Mars does not move, a volcano can form in one spot for a longer period of time. 

25 surprising facts about the solar system

6. The biggest canyon on Mars could take Earth’s Grand Canyon in one bite

Mariner Valley on Mars

Mariner Canyon on Mars is more than 10 times longer than the Grand Canyon on Earth.

The huge system of Martian canyons, known as the Mariner Canyon, is 4,000 kilometers long, more than 10 times larger than the Grand Canyon on Earth. Mariner Canyon was overlooked by early Martian spacecraft that flew over other parts of the planet and was finally discovered by the Mariner 9 probe in 1971. If the Mariner Valley was located on Earth, it could stretch from the East Coast to the West Coast of America.

The lack of active plate tectonics on Mars makes it difficult to discern how Mariner Valley formed. Some scientists think that a chain of volcanoes on the other side of the planet, known as the Tharsis Plateau, which includes Mount Olympus, somehow bent the crust away from Mars. That destructive force created fissures in the crust, exposed vast amounts of groundwater to excavate the rocks, and formed glaciers that opened new routes into the canyon system. 

7. Venus is swept by super-powerful winds

Computer image of the rocky surface of the planet Venus

This artistic image shows the rocky surface of Venus and sulfuric acid clouds.

Venus is a hellish planet with a high temperature and pressure environment on its surface. The second planet in the solar system is extremely dry and hot enough to melt lead and has probably never had an environment conducive to supporting life. When the heavily protected Venus spacecraft from the Soviet Union landed on Venus in the 1970s, each lasted only a few minutes, or hours at most, before melting or shattering.

However, Earth’s infernal twin has a far stranger environment beyond its surface. Scientists have found that the winds in the upper atmosphere of Venus blow 50 times faster than the rotation of the planet. The European Venus Express spacecraft, which orbited Venus between 2006 and 2014, tracked the winds over long periods and detected periodic changes. The probe also showed that powerful winds appear to be getting stronger with time.

A study in 2020 pointed to the presence of phosphine, which is a possible sign of the decay of biological materials, in the clouds of Venus. This study initially excited some astrobiologists, But the supplementary research firmly rejected the possibility of the existence of life in the dry and windy atmosphere of Venus. 

8. Water is everywhere

Computer image of Mars with water lakes

This artistic rendering shows what Mars would look like with water lakes.

At one time, water was considered as a rare substance in space; But the truth is that water ice exists throughout the solar system and is a common constituent of comets and asteroids.

Water can be found as ice in the permanently shadowed craters of Mercury and the Moon. However, we don’t know if there is enough water to support possible human settlements in those places. Also, Mars has ice on its poles. Even smaller solar system objects, such as Enceladus, Saturn’s moon, and the dwarf planet Ceres, have ice.

NASA scientists believe that Jupiter’s moon Europa is the most likely candidate known to support extraterrestrial life; Because contrary to all expectations, liquid water is probably flowing under its cracked and frozen surface. Europa, which is much smaller than Earth, probably has a deep ocean that researchers believe contains twice as much water as all the oceans on Earth combined.

However, we know that not all ice is the same. For example, a close examination of comet 67P/Churyumov-Grasimenko by the European Space Agency’s Rosetta spacecraft revealed a different type of water ice than that found on Earth. 

9. Human spacecraft have visited all planets

Montage of Voyager 2 images of the outer planets of the solar system

The outer planets of the solar system as seen by the Voyager 2 spacecraft.

We’ve been exploring space for over 60 years and have been lucky enough to get close-up images of dozens of celestial bodies. Most importantly, we have sent spacecraft to all the planets in the solar system, including Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune, as well as the two dwarf planets, Pluto and Ceres.

Most of the close flybys of the planets were made by NASA’s Voyager twins, which left Earth more than four decades ago and are still transmitting data from interstellar space to this day. Voyagers met all of them during their long journey, thanks to a rare alignment of the outer planets. 

10. Pollutants may be transported to habitable areas

Hydrothermal vents on the ocean floor

Hydrothermal vents in the ocean.

Scientists have not yet found evidence of life in other parts of the solar system; But as they learn more about the hardy microbes that inhabit Earth’s harsh environments, such as ocean-floor hydrothermal vents or frozen environments, they have more opportunities to find alien life on other planets.

Currently, the presence of microbial life on Mars is considered so probable that scientists take special precautions to clean spacecraft bound for this planet. NASA decided to crash the Galileo spacecraft into Jupiter to avoid the risk of contaminating Europa’s potentially habitable oceans. 

Read More: Will Earth one day become a wandering planet?

25 surprising facts about the solar system

11. Mercury is shrinking


Mercury, the smallest planet in our solar system, has short years, long days, and extreme temperatures.

With the exception of the dwarf planet Pluto, Mercury is currently the smallest planet in the solar system and the most dense planet after Earth. However, the innermost planet in our solar neighborhood is shrinking and becoming denser.

For many years, scientists believed that Earth was the only tectonically active planet in the solar system. But after NASA’s MESSENGER spacecraft, performing its first orbital mission on Mercury, mapped the entire planet in high resolution and took a look at its surface features, this belief changed.

In 2016, MESSENGER data revealed chasm-like features known as fault chasms. Because these fault chasms are relatively small, scientists are confident that they did not form long ago and that Mercury is still contracting, 4.5 billion years after the formation of the solar system. 

12. Pluto has mountains

Pluto's mountains as seen by the New Horizons spacecraft

In July 2015, NASA’s New Horizons spacecraft sent back impressive images of Pluto and its moons.

Pluto is a small world at the edge of the solar system; As a result, scientists thought that this dwarf planet would have a completely uniform environment full of craters. But this belief changed in 2015. That year, NASA’s New Horizons spacecraft flew past Pluto and sent back unprecedented images, forever changing the way we look at this distant object.

Among the amazing discoveries of New Horizons, there were icebergs with a height of 3,300 meters; A finding that suggests Pluto must have been geologically active at least 100 million years ago. But geological activity requires energy, and the source of this energy inside Pluto is a mystery. The Sun is too far away to generate enough heat for geological activity, and there are no large planets close enough to Pluto to cause such a gravitational disturbance. 

13. Pluto has a strange atmosphere

Pluto's atmosphere as seen by the New Horizons spacecraft

NASA’s New Horizons spacecraft took this image of Pluto from a distance of 200,000 km. Pluto’s atmosphere can be seen as a blue haze.

Pluto’s observed atmosphere disproved all predictions. The scientists observed that the dwarf planet’s unexpectedly hazy atmosphere extends up to 1,600 km and extends beyond the Earth’s atmosphere, away from the surface. When data from NASA’s New Horizons mission came in, scientists began analyzing the nebula and discovered some surprises there as well.

Scientists have found nearly 20 layers in Pluto’s atmosphere that are both colder and denser than expected. This feature affects calculations related to the rate of loss of Pluto’s nitrogen-rich atmosphere in space. The New Horizons team found that thousands of kilograms of nitrogen gas escape from the dwarf planet every hour; But Pluto somehow manages to continuously replenish the lost nitrogen. The recovery of this gas is probably done mostly through geological activities. 

14. Rings are more common than you might think


Saturn is not the only ringed object in the solar system.

Since the invention of telescopes in the 17th century, we have known about the existence of rings around Saturn; But to reveal more rings, we needed the powerful spacecraft and telescopes built in the last 50 years. We now know that all the outer planets of the solar system, including Jupiter, Saturn, Uranus, and Neptune, have ring systems.

However, the rings vary from planet to planet: Saturn’s spectacular ring, which is partly made of glowing, reflective water ice, is unmatched anywhere else. In contrast, the rings of other giants are probably made of rocky particles and dust.

Rings are also not limited to planets. For example, in 2014 astronomers discovered rings around the asteroid Chariklo. 

15. Jupiter’s Great Red Spot is shrinking

The Great Red Spot of Jupiter

Jupiter’s Great Red Spot is the largest storm in the solar system.

Besides being the largest planet in the solar system, Jupiter also hosts the largest storm in the solar neighborhood. This red storm, known as the Great Red Spot, has been observed in telescopes since the 17th century and studied with modern instruments such as NASA’s Juno probe. The spacecraft has recently provided evidence that Jupiter’s giant storm is hundreds of kilometers high and is likely fed by winds thousands of kilometers below. This storm has been a complex mystery for centuries; But in recent decades, another secret has been revealed: the Great Red Spot is shrinking.

In 2014, Jupiter’s Great Storm was only 16,500 km wide, roughly half its historical size. This diminution is monitored by professional telescopes as well as amateur astronomers. Amateurs can often take more consistent measurements of the client; Because the observation time in larger and professional telescopes is limited and is often divided between different objects. 

25 surprising facts about the solar system

16. Most comets are detected with solar telescopes

Comet Ison

Comet Ison appears from the lower right of the image and moves to the upper right. This impressive image was captured by the Horspeary Solar Observatory, and the image of the Sun in the center was obtained from NASA’s Solar Dynamics Observatory.

Comets used to be the domain of amateur astronomers who probed the sky night after night with their telescopes. Although some professional observatories also made discoveries while observing comets, the status of explorations in this field started to change with the launch of the Solar and Horseshoe Observatory (SOHO) in 1995.

Since then, SOHO has found more than 2,400 comets. This volume of comet discovery has been a very fruitful side mission for a probe that only observes the Sun. The nickname of these comets is “Sunriser” or “Solstice”. Many amateur astronomers continue to help find these objects by identifying comets in raw SOHO images. One of SOHO’s most famous observations was when it observed the collapse of the bright comet Ison in 2013. 

17. The ninth planet

Hypothetical ninth planet

A ninth planet is a hypothetical world that could explain the motion of some Kuiper belt objects.

In January 2015, California Institute of Technology (Caltech) astronomers Konstantin Batygin and Mike Brown, relying on calculations and mathematical simulations, announced that a giant planet might be hidden far beyond Neptune. Now several teams are searching for this hypothetical “ninth planet” and research shows that it is possible to discover it within the next decade.

A ninth planet, if present, could help explain the motions of some objects in the Kuiper Belt (an icy collection of objects beyond Neptune’s orbit). Brown has already discovered several large bodies in that region, in some cases rivaling Pluto in size. In fact, his discoveries were the catalyst for Pluto’s status change from a planet to a dwarf planet in 2006.

But some scientists follow another theory; That “Planet Nine” might actually be a black hole the size of Grapefruit that bends space just like a giant planet. However, another team suggests that the strange movements of the Kuiper belt’s distant inhabitants are likely the collective effect of several small objects; No undiscovered planets or black holes. 

18. Neptune is very hot

The planet Neptune from the perspective of Voyager 2

The distance of Neptune from the Sun is approximately 30 AU.

Neptune, the outermost planet in the Solar System, is 30 times farther from the Sun than Earth and receives less light and heat. However, Neptune emits much more heat than it receives and has a much more active atmosphere than its neighbor Uranus. Uranus is closer to the Sun, yet emits nearly as much heat as Neptune. Scientists still do not know the cause of this problem.

The wind on Neptune can blow up to 2400 km/h. Does this amount of energy come from the sun, the planet’s core, or gravitational contraction? Researchers are trying to find the answer to this mystery. 

19. Earth’s Van Allen Belt is much stranger than expected

Van Allen belts around the earth

Discovered in 1958, the Van Allen belts are large bands of radiation that surround the Earth and expand and contract based on the activity of the Sun.

The Earth has several magnetically trapped bands of highly energetic charged particles around it, called the Van Allen Belts in honor of their discoverer. Although we’ve known about these belts since the dawn of the space age, the Van Allen probes, launched in 2012, provided the best possible picture of them and revealed many surprises along the way.

We now know that the belts expand and contract based on the activity of the sun. Sometimes the belts are very distinct from each other, and at other times, they swell as one large unit. An additional radiation belt, beyond the two known, was discovered in 2013. Understanding these belts helps scientists make better predictions about space weather or solar storms. 

20. What happened to Miranda?

Miranda, the moon of Uranus

Uranus’ moon Miranda has one of the most diverse landscapes of any extraterrestrial object.

One of the strangest outer moons of the solar system is Miranda. This mysterious moon of Uranus was observed only once in 1986; Voyager 2 caught a glimpse of it during its tour of the solar system. Miranda hosts sharp ridges, craters, and other large discontinuities on its surface that are usually the result of volcanic activity. Tectonic activity can cause the formation of such a surface, But Miranda is too small to generate that kind of heat on her own.

Researchers believe that the gravitational pull of Uranus could have caused the necessary pressure to heat, overturn, and deform Miranda’s surface. But to be sure, we need to send another spacecraft to investigate the unseen northern hemisphere of the moon. 

25 surprising facts about the solar system

21. Saturn’s yin-yang moon

Iaptus, a moon of SaturnIaptus, a moon of Saturn

Saturn’s moon Iapetus shows drastic differences in surface brightness depending on which side it faces the Sun.

Saturn’s moon Iaptus has a very dark hemisphere that always faces the planet and a very bright hemisphere that always faces Saturn. The brightness of most asteroids, moons, and planets is relatively uniform across their surfaces; But Iaptus sometimes shines so brightly that it was observed by the Giovanni Cassini telescope in the 17th century, and then dims considerably as it spins the other way.

Current research shows that Iaptus, also known as Saturn 8, is made mostly of water ice. According to scientists’ hypothesis, when the dark side of the moon faces the sun, water ice sublimates from that area and leaves behind darker rocks. Since dark matter heats up more than bright, reflective ice, this process may have created a positive feedback loop; In this way, when the darker and warmer part of the moon loses its ice, it heats up more easily when facing the sun and accelerates the loss of ice. 

22. Titan has a liquid cycle, But there is definitely no water involved

Artistic rendering of Titan's lakes

Titan’s lakes are full of methane and ethane and possibly a layer of water.

Another strange moon of the solar system is Titan, a moon of Saturn. Titan hosts a “fluid cycle” that moves material between the atmosphere and the surface. This circulation of materials is apparently very similar to the water cycle on Earth; But Titan’s huge lakes are filled with methane and ethane, probably on top of a layer of water.

Using data from the international Cassini mission, researchers hope to uncover some of the moon’s secrets before designing a submarine that could one day explore Titan’s mysterious depths. 

23. Organic molecules are everywhere

The rough surface of comet 67P/Churyumov-Grasimenko

Organic molecules have been found in many places in the solar system, including comet 67P/Churyomov-Grasimenko. In this image, the rugged landscape of the comet’s core was captured by the Rosetta spacecraft.

Organics are complex carbon-based molecules found in living organisms, But abiotic processes can also be their creators. Although common on Earth, organic molecules can be found unexpectedly in many other places in the solar system. For example, scientists have discovered organic matter on the surface of comet 67pi. The hypothesis that organic molecules were probably brought to the surface of our planet from space to start life on Earth was strengthened by the discovery of these molecules in comet P67.

Organic matter has also been found on the surface of Mercury, Titan, Saturn’s moon (which gives it its orange color), and Mars. 

24. Saturn has a hexagonal storm

Saturn's strange hexagonal storm

Saturn’s northern hemisphere is home to a strange hexagonal storm that has been raging for decades.

Saturn’s northern hemisphere has an intense six-sided storm known as the “hexagon”. This hexagon, a towering multi-layered storm, has existed for decades, perhaps even hundreds of years.

Saturn’s strange storm was discovered in the 1980s; But until the Cassini spacecraft flew between 2004 and 2017, it was difficult to observe it. Cassini images and data showed that the hexagonal storm is 300 km high and 32 thousand km wide and consists of air moving at a speed of 320 km/h. 

25. The atmosphere of the Sun is much hotter than the surface of the Sun


The temperature of the sun is different in each layer of its atmosphere.

While the temperature of the visible surface of the sun or photosphere is 5500 degrees Celsius, the temperature of the upper atmosphere or corona (solar corona) reaches millions of degrees. This extreme temperature difference is one of the great mysteries of the star of our system.

However, NASA has several solar-observing spacecraft in its fleet of probes, and they have some hypotheses for how heat is generated in the sun. One such idea is the “heat bombs” that occur when magnetic fields align in the corona. Another hypothesis is related to the time when plasma waves move from the surface of the Sun to the corona.

With new data from the Parker probe, which has become the closest man-made object to the Sun,we are closer than ever to unlocking the secrets of the heart of the Solar System.


Black holes may be the source of mysterious dark energy




black holes
The expansion of black holes in the universe can be a sign of the presence of dark energy at the center of these cosmic giants. The force that drives the growth of the world.

Black holes may be the source of mysterious dark energy


According to new research, supermassive black holes may carry the engines driving the universe’s expansion or mysterious dark energy. The existence of dark energy has been proven based on the observation of stars and galaxies, but so far no one has been able to find out its nature and source.

The familiar matter around us makes up only 5% of everything in the universe. The remaining 27% of the universe is made up of dark matter, which does not absorb or emit any light. On the other hand, a large part of the universe, or nearly 68% of it consists of dark energy.

According to new evidence, black holes may be the source of dark energy that is accelerating the expansion of the universe. This research is the result of the work of 17 astronomers in nine countries, which was conducted under the supervision of the University of Hawaii. British researchers from Raleigh Space, England’s Open University, and King’s College London collaborated in this research.

Black hole accretion pillAn artist’s rendering of a supermassive black hole complete with a fiery accretion disk.

By comparing supermassive black holes spanning 9 billion years of the universe’s history, researchers have found a clue that the greedy giant objects at the heart of most galaxies could be the source of dark energy. The articles of this research were published in The Astrophysical Journal and The Astrophysical Journal Letters on February 2 and 15. Chris Pearson, one of the authors of the study and an astrophysicist at the Appleton Rutherford Laboratory (RAL) in the UK says:

If the theory of this research is correct, it could revolutionize the whole of cosmology, because at least we have found a solution to the origin of dark energy, which has puzzled cosmologists and theoretical physicists for more than twenty years.

The theory that black holes can carry something called vacuum energy (an embodiment of dark energy) is not new, and the discussion of its theory actually goes back to the 1960s; But the new research assumes that dark energy (and therefore the mass of black holes) increases over time as the universe expands. Researchers have shown how much of the universe’s dark energy can be attributed to this process. According to the findings, black holes could hold the answer to the total amount of dark energy in the current universe. The result of this puzzle can solve one of the most fundamental problems of modern cosmology.

Rapid expansion

Our universe began with the Big Bang about 13.7 billion years ago. The energy from this explosion of space once caused the universe to expand so rapidly that all the galaxies were moving away from each other at breakneck speed. However, astronomers expected the rate of this expansion to slow down due to the gravitational influence of all the matter in the universe. This attitude toward the world prevailed until the 1990s; That is when the Hubble Space Telescope made a strange discovery. Observations of distant exploding stars have shown that in the past the universe was expanding at a slower rate than it is now.

Therefore, contrary to the previous idea, not only the expansion of the universe has not slowed down due to gravity, but it is increasing and speeding up. This result was very unexpected and astronomers sought to justify it. Thus, it was assumed that “dark energy” pushes objects away from each other with great power. The concept of dark energy was very similar to a cosmic constant proposed by Albert Einstein that opposes gravity and prevents the universe from collapsing but was later rejected.

Stellar explosions

But what exactly is dark energy? The answer to this question seems to lie in another cosmic mystery: black holes. Black holes are usually born when massive stars explode and die. The gravity and pressure in these intense explosions compress a large amount of material into a small space. For example, a star roughly the same mass as the Sun can be compressed into a space of only a few tens of kilometers.

The gravitational pull of a black hole is so strong that even light cannot escape it and everything is attracted to it. At the center of the black hole is a space called singularity, where matter reaches the point of infinite density. The point is that singularities should not exist in nature.

Speed ​​up dark energyDark energy explains why the universe is expanding at an accelerating rate.

Black holes at the center of galaxies are much more massive than black holes from the death of stars. The mass of galactic “massive” black holes can reach millions to billions of times the mass of the Sun. All black holes increase in size by accreting matter and swallowing nearby stars or merging with other black holes; Therefore, we expect these objects to become larger as they age. In the latest paper, researchers investigated the supermassive black holes at the centers of galaxies and found that the mass of these objects has increased over billions of years.

Fundamental revision

The researchers compared the past and present observations of elliptical galaxies that lack the star formation process. These dead galaxies have used up all their fuel, and as a result, their increase in the number of black holes over time cannot be attributed to normal processes that involve the growth of black holes by accreting matter.

Instead, the researchers suggested that these black holes actually carry vacuum energy, which has a direct relationship with the expansion of the universe, so as the universe expands, their mass also increases.

Black hole visualizationVisualization of a black hole that could play a fundamental role in dark energy.

Revealing dark energy

Two groups of researchers compared the mass of black holes at the center of two sets of galaxies. They were a young, distant cluster of galaxies with lights originating nine billion years ago, while the closer, older group was only a few million light-years away. Astronomers found that supermassive black holes have grown between seven and twenty times larger than before so this growth cannot be explained simply by swallowing stars or colliding and merging with other black holes.

As a result, it was hypothesized that black holes are probably growing along with the universe, and with a type of hypothetical energy known as dark energy or vacuum that leads to their expansion, they overcome the forces of light absorption and destruction of the stars in their center.

If dark energy is expanding inside the core of black holes, it can solve two long-standing puzzles of Einstein’s general relativity; A theory that shows how gravity affects the universe on massive scales. The new finding firstly proves how the universe does not fall apart due to the overwhelming force of gravity, and secondly, it eliminates the need for singularities (points of infinity where the laws of physics are violated) to describe the workings of the dark heart of black holes.

To confirm their findings, astronomers need more observations of the mass of black holes over time, and at the same time, they need to examine the increase in mass as the universe expands.

Continue Reading


Scientists’ understanding of dark energy may be completely wrong




dark energy
The standard model of cosmology says that the strength of dark energy should be constant, But inconclusive findings suggest that this force may have weakened.

Scientists’ understanding of dark energy may be completely wrong

On April 4th, astronomers who created the largest and most detailed 3D map ever made of the universe announced that they may have found a major flaw in their understanding of dark energy, the mysterious force driving the universe’s expansion.

Dark energy has been postulated as a stable force in the universe, both in the current era and throughout the history of the universe; But new data suggests that dark energy may be more variable, getting stronger or weaker over time, reversing or even disappearing.

Adam Reiss, an astronomer at Johns Hopkins University and the Space Telescope Science Institute in Baltimore, who was not involved in the new study, was quoted by the New York Times as saying, “The new finding may be the first real clue we’ve had in 25 years about the nature of dark energy.” In 2011, Reiss won the Nobel Prize in Physics along with two other astronomers for the discovery of dark energy.

The recent conclusion, if confirmed, could save astronomers and other scientists from predicting the ultimate fate of the universe. If the dark energy has a constant effect over time, it will eventually push all the stars and galaxies away from each other so much that even the atoms may disintegrate and the universe and all life in it, light, and energy will be destroyed forever. Instead, it appears that dark energy can change course and steer the universe toward a more fruitful future.

Dark energy may become stronger or weaker, reverse or even disappear over time

However, nothing is certain. The new finding has about a 1 in 400 chance of being a statistical coincidence. More precisely, the degree of certainty of a new discovery is three sigma, which is much lower than the gold standard for scientific discoveries called five sigma or one in 1.7 million. In the history of physics, even five-sigma events have been discredited when more data or better interpretations have emerged.

The recent discovery is considered an initial report and has been published as a series of articles by the group responsible for an international project called “Dark Energy Spectroscopy Instrument” or DESI for short. The group has just begun a five-year effort to create a three-dimensional map of the positions and velocities of 40 million galaxies over the 11 billion-year history of the universe. The researchers made their initial map based on the first year of observations of just six million galaxies. The results were presented April 4 at the American Physical Society meeting in Sacramento, California, and at a conference in Italy.

“So far we’re seeing initial consistency with our best model of the universe,” DESI director Michael Levy said in a statement released by Lawrence Berkeley National Laboratory, the center overseeing the project. “But we also see some potentially interesting differences that may indicate the evolution of dark energy over time.”

“The DESI team didn’t expect to find the treasure so soon,” Natalie Palanque-Delaberville, an astrophysicist at Lawrence Berkeley Lab and project spokeswoman, said in an interview. The first year’s results were designed solely to confirm what we already knew. “We thought we would basically approve the standard model.” But the unknowns appeared before the eyes of the researchers.

The researchers’ new map is not fully compatible with the standard model

When the scientists combined their map with other cosmological data, they were surprised to find that it didn’t completely fit the Standard Model. This model assumes that dark energy is stable and unchanging; While variable dark energy fits the new data. However, Dr. Palanque-Delaberville sees the new discovery as an interesting clue that has not yet turned into definitive proof.

University of Chicago astrophysicist Wendy Friedman, who led the scientific effort to measure the expansion of the universe, described the team’s results as “tremendous findings that have the potential to open a new window into understanding dark energy.” As the dominant force in the universe, dark energy remains the greatest mystery in cosmology.

Imaging the passage of quasar light through intergalactic clouds
Artistic rendering of quasar light passing through intergalactic clouds of hydrogen gas. This light provides clues to the structure of the distant universe.
NOIRLab/NSF/AURA/P. Marenfeld and DESI collaboration

The idea of ​​dark energy was proposed in 1998; When two competing groups of astronomers, including Dr. Rees, discovered that the rate of expansion of the universe was increasing rather than decreasing, contrary to what most scientists expected. Early observations seemed to show that dark energy behaved just like the famous ” fudge factor ” denoted by the Greek letter lambda. Albert Einstein included lambda in his equations to explain why the universe does not collapse due to its own gravity; But later he called this action his biggest mistake.

However, Einstein probably judged too soon. Lambda, as formulated by Einstein, was a property of space itself: as the universe expands, the more space there is, the more dark energy there is, which pushes ever harder, eventually leading to an unbridled, lightless future.

Dark energy was placed in the standard model called LCDM, consisting of 70% dark energy (lambda), 25% cold dark matter (a collection of low-speed alien particles), and 5% atomic matter. Although this model has now been discredited by the James Webb Space Telescope , it still holds its validity. However, what if dark energy is not as stable as the cosmological model assumes?

The problem is related to a parameter called w, a special measure for measuring the density or intensity of dark energy. In Einstein’s version of dark energy, the value of this parameter remains constant negative one throughout the life of the universe. Cosmologists have used this value in their models for the past 25 years.

Albert Einstein included lambda in his equations to explain why the universe is collapsing under its own gravity.

But Einstein’s hypothesis of dark energy is only the simplest version. “With the Desi project we now have the precision that allows us to go beyond that simple model to see if the dark energy density is constant over time or if it fluctuates and evolves over time,” says Dr. Palanque-Delabreville.

The Desi project, 14 years in the making, is designed to test the stability of this energy by measuring the expansion rate of the universe at different times in the past. In order to do this, scientists equipped one of the telescopes of the Keith Peak National Observatory in Arizona, USA, with five thousand optical fiber detectors that can perform spectroscopy on a large number of galaxies at the same time to find out how fast they are moving away from Earth.

The researchers used fluctuations in the cosmic distribution of galaxies, known as baryonic acoustic variations , as a measure of distance. The sound waves in the hot plasma accumulated in the universe, when it was only 380,000 years old, carved the oscillations on the universe. At that time, the oscillations were half a million light years across. 13.5 billion years later, the universe has expanded a thousandfold, and the oscillations, now 500 million light-years across, serve as convenient rulers for cosmic measurements.

Desi scientists divided the last 11 billion years of the universe into 7 time periods and measured the size of the fluctuations and the speed of the galaxies in them moving away from us and from each other. When the researchers put all the data together, they found that the assumption that dark energy is constant does not explain the expansion of the universe. Galaxies appeared closer than they should be in the last three periods; An observation that suggests dark energy may be evolving over time.

“We’re actually seeing a clue that the properties of dark energy don’t fit a simple cosmological constant, and instead may have some deviations,” says Dr. Palanque-Delaberville. However, he believes that the new finding is too weak and is not considered proof yet. Time and more data will determine the fate of dark energy and the researchers’ tested model.

Continue Reading


Why the James Webb telescope does not observe the beginning of the universe?




James Webb telescope

The James Webb Space Telescope is one of the most advanced telescopes ever built. Planning to launch James Webb began more than 25 years ago, and construction efforts took more than a decade. On December 25, 2021, this telescope was launched into space and within a month it reached its final destination, 930,000 miles away from Earth. Its position in space gives it a relatively unobstructed view of the world.

Why the “James Webb” telescope does not observe the beginning of the universe?

The design of this telescope was a global effort led by NASA and aims to push the boundaries of astronomical observation with revolutionary engineering. Its mirror is huge, about 21 feet (6.5 meters) in diameter, which is about three times the size of the Hubble Space Telescope, which was launched in 1990 and is still operating.

According to SF, it’s the telescope’s mirror that allows it to gather light. James Webb is so big that it can see the faintest and most distant galaxies and stars in the universe. Its advanced instruments can reveal information about the composition, temperature, and motion of these distant cosmic bodies.

Astrophysicists constantly look back to see what stars, galaxies, and supermassive black holes looked like when their light began its journey toward Earth, and use this information to better understand their growth and evolution. For the space scientist, the James Webb Space Telescope is a window into that unknown world. How far can James Webb look into the universe and its past? The answer is about 13.5 billion years.

Time travel

A telescope does not show stars, galaxies, and exoplanets as they are. Instead, astrologers have a glimpse of how they were in the past. It takes time for light to travel through space and reach our telescope. In essence, this means that looking into space is also a journey into the past.

This is true even for objects that are quite close to us. The light you see from the sun has left about eight minutes and 20 seconds earlier. This is how long it takes for sunlight to reach the earth.

You can easily do calculations on this. All light, whether it’s sunlight, a flashlight, or a light bulb in your home, travels at a speed of 186,000 miles (approximately 300,000 kilometers) per second. This is more than 11 million miles, which is about 18 million kilometers per minute. The sun is about 93 million miles (150 million kilometers) from the earth. which brings the time of reaching the light to about eight minutes and 20 seconds.

Why the “James Webb” telescope does not observe the moment of the beginning of the universe?

But the farther something is, the longer it takes for its light to reach us. That’s why the light we see from the closest star to us other than the Sun, Proxima Centauri, dates back four years. This star is about 25 trillion miles (about 40 trillion kilometers) from Earth, so it takes a little over four years for its light to reach us.

Recently, James Webb has observed the star Earendel, which is one of the most distant stars ever discovered and the light that James Webb sees is about 12.9 billion years old.

The James Webb Space Telescope travels much further into the past than other telescopes such as the Hubble Space Telescope. For example, although Hubble can see objects 60,000 times fainter than the human eye, James Webb can see objects almost 9 times fainter than even Hubble.

Read more: How can solar storms destroy satellites so easily?

Big Bang

But is it possible to go back to the beginning of time?

Big Bang is the term used to define the beginning of the universe as we know it. Scientists believe that this happened about 13.8 billion years ago. This theory is the most accepted theory among physicists to explain the history of our universe.

However, the name is a bit misleading because it suggests that some kind of explosion, like a firework, created the universe. The Big Bang more accurately represents space that is rapidly expanding everywhere in the universe. The environment immediately after the Big Bang resembled a cosmic fog that covered the universe and made it difficult for light to pass through. Eventually, galaxies, stars, and planets began to grow.

That’s why this period is called the “Cosmic Dark Age” in the world. As the universe continued to expand, the cosmic fog began to lift and light was finally able to travel freely through space. In fact, few satellites have observed the light left over from the Big Bang some 380,000 years after it happened. These telescopes are designed to detect the glow left over from the nebula, whose light can be traced in the microwave band.

However, even 380,000 years after the Big Bang, there were no stars or galaxies. The world was still a very dark place. The cosmic dark ages did not end until several hundred million years later when the first stars and galaxies began to form.

The James Webb Space Telescope was not designed to observe the time to the moment of the Big Bang, but to see the period when the first objects in the universe began to form and emit light.

Before this time period, due to the conditions of the early universe and the lack of galaxies and stars, there was little light for the James Webb Space Telescope to observe.

By studying ancient galaxies, scientists hope to understand the unique conditions of the early universe and gain insight into the processes that helped them flourish. This includes the evolution of supermassive black holes, the life cycles of stars, and what exoplanets are made of.

Continue Reading