Connect with us

Space

What should we do if we find the second Earth?

Published

on

What should we do if we find the second Earth?
Researchers are constantly searching for the next Earth, but what are the chances of finding a planet like our home, and if we do, what is the next step? So what should we do if we find the second Earth?

What should we do if we find the second Earth?

One of the most frequently asked questions about the search for exoplanets is: When exactly will we find another Earth? The more we learn about space, the more we realize that there are different worlds and it is natural to search for another earth. So what should we do if we find the second Earth?

Our Milky Way galaxy hosts hundreds of billions of stars. According to current statistics, there are trillions of planets in the Milky Way alone. Of course, from a realistic point of view, this statistic does not mean that every star has a planet, but some stars may not have planets while others have crowded systems.

Extrasolar planets are placed in different and sometimes strange spectra; Worlds as big as Jupiter that are at a close distance from their parent star and their burning atmosphere is scattered into space, and planets bigger than Earth and smaller than Neptune, which are the most common type of extrasolar planets; Although our solar system does not have such a planet. We can also refer to the planets where iron rain falls. This strange list goes on.

The list of exoplanets also includes many Earth-sized planets. Among the more than 5,500 extrasolar planets that have been discovered so far, nearly 100 planets are similar to our Earth in terms of dimensions; But the similarities do not end there.

If you were to find an exact copy of Earth in terms of mass, size, and composition with breathable air and potable water, you’d be looking for a long time. The formation of planets is a random process; A large number of random variables influence the formation and evolution of planets over time. Even small changes can have dramatic consequences in planetary evolution, and many of these variables interact with each other.

Earth-like planetsAmong the 5,500 discovered exoplanets, 100 are Earth-like

For example, a planet that is slightly warmer than Earth is likely to be orbiting a hotter star or closer to a cooler star. Such a planet could experience a greenhouse effect, have boiling oceans, and eventually have a surface hot enough to melt even lead. Venus is such a planet.

Based on current evidence, even small changes in a planet’s atmospheric carbon dioxide can have dramatic effects on its global environment. Certainly, these changes will not make the Earth uninhabitable, but its high speed can become a problem.

Above all, the earth has not always been what it is today. Our planet did not have a breathable atmosphere for two billion years, and access to oxygen was provided only through dramatic environmental changes. It is also possible that our planet experienced at least one complete period of freezing, known as the Snowball Earth period. Although this idea is somewhat controversial, the earth in the past has not resembled what it is today.

Read More: NASA scientists discovered a galactic fossil!

Additionally, there is a growing consensus in the scientific community that Mars once had more habitable conditions than the current arid climate, and was probably Earth-like a few billion years ago. It can even be said that today’s hellish Venus had a habitable past.

The definition of habitability is more vague than we think. Icy moons in the outer part of the solar system have oceans under their frozen crust and have possible conditions for life. Eternal darkness in freezing temperatures may not be our earthly paradise, but it could provide favorable conditions for the evolution of extraterrestrial life.

Image of Maun from MarsNASA’s MAVEN mission has achieved amazing views of Mars

With all the buts and ifs, we may never find an exoplanet exactly like Earth. First of all, we still don’t have much data about the atmosphere and chemical composition of Earth-like planets. Among the 100 Earth-like planets, only three of them are exactly the same mass as Earth and receive the same amount of light and heat as Earth from their parent planet. Three is a very small number, but even as current methods of discovery have improved in finding hotter and more massive planets, observing medium-sized Earth-like planets is more difficult.

However, methods are constantly improving, and we may not need to wait a long time to find an Earth-like planet around other stars; But if such a planet is discovered, what will be the next step?

Put the thought of going to Earth-like planets out of your head, at least for the time being

Put the thought of going to Earth-like planets out of your head, at least for the time being. There are currently no plans to go to a second Earth, and without faster-than-light speed, we’ll have a long way to go. Even the fastest spacecraft ever built would take at best a thousand years to reach the nearest star system, Proxima Centauri. This system hosts an Earth-sized planet that might meet our criteria.

Many science fiction movies tell us that we need to evacuate the Earth. However, this challenge is beyond these films. The human population increases by more than 70 million people every year. Even if we ignore travel time, we need 2,000 SpaceX starships per day to deal with this population increase; But reducing population pressure through interstellar migration is an empty promise.

On the other hand, it is difficult to build a habitat. We don’t even know how to do it in low Earth orbit, the Moon or Mars. We still have a long way to go with sustainable living in a foreign land. When we discuss the second Earth, the most important part of the story is whether we can travel to such a planet and live there. Simply put, we can’t; So what’s the point of looking for it when we can’t go there?

We search because we have a desire to know. Remember that finding an Earth-like planet is not the ultimate goal of exoplanet science. In fact, the purpose of searching for other planets is to find out how they were formed, the effect of conditions on their physical characteristics, and their differences and similarities to other planets in the solar system.

From a human and emotional point of view, we wish to find another pale blue dot in the depths of space; To know that sometime somewhere in space, the conditions were created to repeat or at least enjoy the same situation as us on Earth. Certainly, the mere acquisition of such knowledge makes a profound change in the way we look at the world and our place in it. Such a discovery makes us realize that our earth is not exceptional.

The discovery of a second Earth may also help answer humanity’s most fundamental question: How did we get to where we are today? For thousands of years, this question has inspired speculation, myth, religion, and philosophy. If we find another habitable world, we can dare and open the door to the next big question: Are we alone?

Space

Why is Jupiter not a star due to its large size?

Published

on

By

Jupiter
The smallest known star is smaller than Jupiter. So it can be said that Jupiter could also become a star? In this article, we answer this question.

Why is Jupiter not a star due to its large size?

The smallest known main-sequence star in the Milky Way is a red dwarf called EBLM J0555-57Ab, located 600 light-years from Earth. With an average radius of nearly 59,000 kilometers, this star is only slightly larger than the planet Saturn. Therefore, this red dwarf is the smallest known star that has hydrogen fusion in its core; The process that provides the star’s energy to burn until the end of its life.

In the solar system, there are two objects bigger than the mentioned star. One of them is the sun; But the other is the planet Jupiter , whose radius reaches 69,911 kilometers; But why is Jupiter a planet and not a star according to these dimensions?

The answer to the above question is simple: Jupiter does not have enough mass to support the hydrogen-to-helium fusion process. The star EBLM J0555-57Ab is nearly 85 times more massive than Jupiter. If this star was a little lighter, it would not be able to perform the hydrogen fusion process; But if the solar system had a different structure, would it be possible for the planet Jupiter to shine as a star?

Jupiter and the Sun are more similar than you might think

Jupiter may not be a star, but it has a huge influence on the solar system. The mass of this gas giant is 2.5 times the total mass of other planets in the solar system. On the other hand, Jupiter has a low density of 1.33 grams per cubic centimeter. While the density of the Earth is close to 5.51 grams per cubic centimeter, which is four times more than the density of Jupiter.

But it is interesting to point out the similarities between Jupiter and the Sun. The density of the sun is 1.41 grams per cubic centimeter. These two crimes are also very similar in composition. In terms of mass, nearly 71% of the sun is made up of hydrogen and 21% of it is made up of helium, and traces of other elements can be seen in it. On the other hand, 73% of Jupiter is made of hydrogen and 24% of it is made of helium.

Jupiter's moon Io
Illustration of the planet Jupiter and its moon Io

For the above reasons, Jupiter is sometimes called a failed star; But again, Jupiter is unlikely to even come close to being a star. Stars and planets form in two completely different mechanisms. Stars form when a dense knot of matter in an interstellar molecular cloud collapses under its own gravity. This material begins to rotate in a process called cloud collapse. As rotation continues, more material from the surrounding cloud enters the stellar accretion disk.

With the increase in mass and as a result of gravity, the core of the baby star becomes more and more compact, which causes the temperature to increase and make it hotter. Finally, this mass becomes so compressed and hot that its core ignites and the process of thermonuclear fusion begins.

Based on our understanding of the star formation process, when a star runs out of accretion material, a full portion of its accretion disk remains. Planets form from this residue. According to astronomers, for gas giants like Jupiter, this process, called accretion, begins with small clumps of icy rocks and dust in the disk. With the rotation of these materials around the baby star, their density starts gradually and they stick to each other with the force of static electricity. Finally, these growing masses reach the size of nearly 10 times the mass of the earth; So that they can gravitationally absorb more gases from the surrounding disk.

From this stage, the gradual growth of the customer and its current mass began. The current mass of Jupiter is 318 times the mass of the Earth and 0.001 times the mass of the Sun. When a gas giant absorbs all its available matter, its growth stops. As a result, Jupiter has never even approached the mass of a star. The reason why Jupiter’s composition is similar to the Sun is not that it is a failed star; Rather, the reason for being born in the molecular gas cloud is the same as the sun.

Jupiter as seen from Juno

Real failed stars

There are different groups of objects that can be classified as failed stars. These objects are called brown dwarfs and can fill the gap between gas giants and stars. The mass of brown dwarfs starts at 13 times the mass of Jupiter. These objects are heavy enough to support nuclear fusion, but this fusion is not of ordinary hydrogen but of deuterium or heavy hydrogen. Deuterium is an isotope of hydrogen that has one proton and one neutron in its nucleus instead of just one proton. The temperature and pressure of deuterium fusion is lower than the temperature and pressure of hydrogen fusion.

Since deuterium fusion occurs at lower mass, temperature and pressure, it is one of the steps to reach hydrogen fusion for stars whose accretion process continues and absorb the surrounding mass; But some objects never reach the required mass for hydrogen fusion.

Shortly after the discovery of brown dwarfs in 1995, these objects were called failed stars or ambitious planets, but numerous studies show that the formation of these objects like stars was from cloud collapse, not core accumulation; Some brown dwarfs do not even have enough mass to fuse deuterium, making them difficult to distinguish from planets.

Jupiter has exactly the lower mass limit for cloud collapse; The minimum mass required for cloud collapse is approximately equal to the mass of the planet Jupiter. As a result, if the planet Jupiter was formed from the collapse of a cloud, we could place it in the group of failed stars; But data from NASA’s Juno probe suggests that Jupiter at least once had a solid core, which is more consistent with the theory of core formation.

Modeling shows that the upper limit of planetary mass and formation by core accretion method is less than 10 times the mass of Jupiter. As a result, the planet Jupiter is not included in the group of failed stars; But by thinking about the cause of this issue, we can get a better understanding of how the universe works. In addition, the planet Jupiter has a stormy, striped and twisted appearance, and the existence of humans would probably not be possible without this gas giant.

Continue Reading

Space

Why doesn’t Jupiter have big and bright rings like Saturn?

Published

on

By

Jupiter
Why doesn’t Jupiter have big and bright rings like Saturn? Despite Jupiter’s resemblance to its neighbor Saturn, this planet lacks bright and beautiful rings. What factors have contributed to the diminution of customer circles?

Why doesn’t Jupiter have big and bright rings like Saturn?

Considering the similarity of the planet Jupiter to its neighbor Saturn, it is natural to ask why this planet does not have clear and bright rings like Saturn. However, Jupiter has thin, narrow rings made up of dust that only shine when there is sunlight in the background. According to new research, these narrow rings lack brightness because the large Galilean moons prevent rocks and dust from accumulating around Jupiter. According to Stephen Kane, an astrophysicist at the University of California Riverside:

The fact that Jupiter doesn’t have brighter rings than Saturn has bothered me for a long time. If Jupiter had such rings, it would certainly appear brighter to us because this planet is much closer to Earth than Saturn.

Keen and his colleague Zhixing Li, an astrophysicist at Riverside University, ran a series of simulations of objects orbiting Jupiter to test the hypothesis of a giant ring system around Jupiter at some point in history. The aforementioned simulations considered the orbital motion of Jupiter and its four largest moons, known as the Galilean moons, which are: Ganymede (which is even larger than Mercury and is known as the largest moon in the solar system), Callisto, Io, and Europa. The researchers also included enough time for the formation of a ring system in their simulations. According to this modeling, Jupiter has not even had rings similar to Saturn in the past and is unlikely to have them in the future. Kane explains:

Giant and heavy planets have heavy moons and these moons prevent the formation of rings of matter. The Galilean moons of Jupiter, one of the largest in the Solar System, would quickly destroy any potential large rings that might be forming.

Jupiter has narrow rings, most of which are dust from moons and material that may have been thrown into space by impact events. On the other hand, much of Saturn’s rings are made up of ice, possibly fragments of comets, asteroids, or icy moons that have been broken apart by Saturn’s gravity.

We know that Saturn’s moons play a vital role in the formation and maintenance of its rings, But one or more large moons can also gravitationally disrupt the rings and drive the ice out of the planetary orbit and into an unknown region. Although most people think that Saturn is the only planet with rings, rings around planets are very common even in the solar system. For example, in addition to Jupiter, the solar system’s ice giants Uranus and Neptune both have narrow rings of gas and dust.

Compared to other planets, Uranus has a strong axial deviation and its orbital axis is parallel to the orbital plane. The position of the rings of this planet is adjusted accordingly. Probably, a mass collided with Uranus and led to its axial deviation, or possibly this planet once had huge rings that caused this deviation. Of course, rings are not limited to planets. A small body with a width of 230 km called Chariklo, which is located in the orbit between Jupiter and Uranus, also has rings.

Also, the dwarf planet Haumea in the Kuiper belt has a ring. Simulations show that rings around ice masses are common due to the gravitational interaction and removal of ice from these masses.

Mars is also likely to be ringed in the future. The moon of Mars, Phobos, comes a little closer to this planet every year. Over the next hundred million years, the moon will come close enough to Mars that the planet’s gravity will break it apart, forming a short-lived ring that may recondense into a moon. Even Saturn’s rings may be temporary and rain down on the planet in the future. If we can study the rings in great detail, we can use them to fit together the puzzle pieces of planetary history. Kane believes:

To us astronomers, the rings are like bloodstains on a crime scene wall. When we look at the rings of the giant planets, we find evidence of the events that caused this material to accumulate.

Anyway, now that Jupiter has no spectacular rings, let’s enjoy Saturn’s rings. The Planetary Science Journal has accepted this research and is available on the arXiv database.

Continue Reading

Space

Why do none of the moons of the solar system have rings?

Published

on

By

moons of the solar system
Many different moons have been discovered in the solar system. However, they all have one thing in common: none of them have rings.

Why do none of the moons of the solar system have rings?

We have many strange moons in our solar system. hot and cold moons; Moons with liquids and dusty moons. One lunar planet is walnut-shaped and another is potato-shaped; But among almost 300 moons that have been discovered so far, not even one of them has rings. This is really strange.

Of the eight planets in the solar system, half have rings of dust and ice that orbit their equator. It is thought that Mars once had a ring, and according to new research, even our blue planet probably had a ring similar to Saturn’s ring about 500 million years ago, which lasted for tens of millions of years.

In addition, some dwarf planets also have rings; Although astronomers have not yet been able to understand how these rings are formed. Even some asteroids have their own rings.

While investigating the concept of ringed moons outside our solar system, Mario Socercchia, an astrophysicist at the Universidad Adolfo Ibánez in Chile, and his colleagues became involved in the question of why moons in our own cosmic neighborhood lack rings. In an interview with Science Alert, he explains:

If the giant planets of the solar system have rings, and if the asteroids beyond the orbit of Jupiter and the non-Neptunian bodies also have rings, why don’t the moons of the solar system have rings? This absence is illogical considering the presence of rings in other places. As a result, it is better to investigate whether there are underlying dynamical reasons that prevent the formation of rings or their long-term stability around moons.

The planet Uranus and its ringsJames Webb Space Telescope image of the rings of the planet Uranus.

We have yet to definitively discover an extrasolar moon, but in 2021 Soserkia and his colleagues hypothesized that if a moon had a large ring system, it could engineer its existence by blocking enough starlight. But the group later realized that we have yet to see any ringed moons, so the likelihood of their existence is very low.

When you’re an astronomer with a question in mind and a simulation tool at hand, there’s only one thing you can do: build models of cosmic systems and see what happens when you set them in motion.

There are many raw materials from which rings can form around the moons of the solar system. Some of these materials are dust resulting from the formation of impact craters. Some other moons emit steam or gas of their own, so there seems to be no problem with ring formation.

Considering the gravitational influence of the moon, host planet and other moons, researchers designed and tested physical N simulations and realized that due to these variables, ring formation around moons is difficult.

e ring of saturn
Saturn’s E ring formed from material ejected from the icy moon Enceladus

For example, Saturn’s moon Enceladus releases water vapor, ice particles, and gases from its glaciers in the Antarctic region with its remarkable surface activity. However, instead of forming a ring around this moon, these materials are transported into Saturn’s orbit by strong interactions with neighboring moons, feeding Saturn’s E ring.

In other words, even though the moons produce part of the raw materials necessary for the ring, their surrounding environment makes a large part of these materials available to the host planet and prevents the formation of the ring around the moons themselves.

So far, NASA has discovered 293 moons in the orbit of the planets of the solar system, most of which belong to the planets Jupiter and Saturn. Also, moons around dwarf planets and even asteroids have been discovered.

Soserkia and his team simulated the moons of a variety of solar system objects, from the Earth’s moon to the larger moons of Jupiter and Saturn, over millions of years of evolution. They sought to investigate the stability of these objects, their gravitational environment, possible ring systems, and their changes over time. The results of the investigation were contrary to the expectations of the researchers. Susarkia explains about this:

At first I expected rings to be completely unstable, which directly answered our question. However, contrary to expectation, we found that these structures have maintained their stability in many conditions. Indeed, in a previous paper we showed that isolated moons can have stable rings, but we did not predict that moons would remain stable in harsh gravitational environments despite the large number of other moons and planets that have distributed their rings. Another surprise came when we realized that these harsh environments, instead of destroying the rings, beautified them by creating structures like cracks and waves, which were just like what we see in Saturn’s rings.

Iaptus, a moon of SaturnSaturn’s moon Iapetus with its prominent equatorial ridge.

Some features of the moons of the solar system are signs of the past of the rings. The simulations suggest that the pebbles found orbiting Saturn’s moon Rhea could be the last remnants of a complete ring system. Also, Saturn’s moon Iaptus has a equatorial groove, which could be the remnant of a ring that fell on this moon, and in this sense, it is just like Saturn’s rings that slowly fall on this gas giant.

The findings show that the reason we do not see rings in the solar system today is that we are not in the right time and place. Solar radiation pressure, magnetic fields, internal heating, and magnetospheric plasma all contribute to the loss of once-existing lunar rings. According to Susarkia:

I believe we are unlucky to some extent; Because we started observing the universe during a period when these structures no longer exist. After doing this research, I was convinced that these rings probably existed in the past.

On the other hand, the only reason we see Saturn’s rings is because we are in the right place and time. For this reason, we see solar and lunar eclipses; Because the moon is gradually moving away from the earth and at some point it will be so far that it can no longer completely cover the sun.

rings of saturnThe glory of Saturn’s rings.

The researchers believe that further simulations that take into account more parameters, such as beam pressure and magnetic fields, can help us understand the absence of lunar rings in more detail. We should also look more closely at the moons and look for evidence of the past, such as the craters on Iaptus.

At the same time, Suserkia and his colleagues are looking to expand their search and look for moons of rings around alien extrasolar worlds. He explains:

I wonder what mythical and epic stories we will hear from the inhabitants of other worlds about ringed moons. I mean, how will their stories and culture about the moons of the rings be different from our stories? There are infinite possibilities.

The scientists’ research has been accepted for publication in the Journal of Astronomy and Astrophysics and is available in the archive database.

Continue Reading

Popular