Connect with us

Health

What is a chromosome DNA and genes

Published

on

What is a chromosome?

What is a chromosome? Everything we need to know about chromosomes . Our genetic information is stored in 23 pairs of chromosomes that vary greatly in size and shape. Join us to learn more about chromosomes.

What is a chromosome?

Chromosomes are string-like structures located in the nucleus of plant and animal cells. Each chromosome consists of a protein and a molecule of deoxyribonucleic acid (DNA). DNA is passed from parent to offspring and contains specific instructions that make each living thing unique.

The term chromosome (colored body) comes from the Greek words color (chroma) and body (soma). Scientists gave this name to chromosomes because they are structures or cell bodies that are strongly colored by special dyes used in research. What do chromosomes do?

The unique structure of chromosomes keeps DNA tightly wrapped around coil-like proteins called histones. Without such packaging, DNA molecules are too long to fit inside cells. For example, if all the DNA molecules in a human cell were separated from their histones and strung together, they would be 6 feet (1.8 meters) long.

For an organism to grow and function properly, cells must constantly divide to produce new cells to replace old cells. During cell division, it is essential that DNA remains intact and is equally distributed between cells. Chromosomes are a key part of the process that ensures that DNA is accurately copied and distributed during cell division. However, in rare cases, mistakes also occur.

Changes in the number or structure of chromosomes in new cells can lead to serious problems. For example, in humans, some types of leukemia and some other cancers are caused by defective chromosomes, which are made up of joined pieces of broken chromosomes.

It is also very important that reproductive cells such as eggs and sperm contain the correct number of chromosomes and that their chromosome structure is correct. Otherwise, the growth and development of the resulting children may be disturbed. For example, people with Down syndrome have 3 copies of chromosome 21 instead of the two copies that other people have.

Chromosome DNA and genes

Do all living things have the same type of chromosomes?

The number and shape of chromosomes vary among living organisms. Most bacteria have one or two circular chromosomes. Humans, along with other animals and plants, have linear chromosomes that are located in pairs in the nucleus of cells.

The only human cells that do not contain a pair of chromosomes are the reproductive cells, or gametes, which carry only one copy of each chromosome. When two gametes fuse, they become a single cell that contains two copies of each chromosome. This cell then divides and the resulting cells divide many times, eventually forming an adult that has a complete set of chromosome pairs in almost all of its cells.

In addition to the linear chromosomes found in the cell nucleus, human cells, and other complex organisms have a much smaller type of chromosome that resembles what is found in bacteria. This circular chromosome is found in mitochondria, which are structures outside the nucleus that act as the powerhouse of the cell.

Scientists think that in the past, mitochondria were independent bacteria with the ability to convert oxygen into energy. When these bacteria attacked cells that could not use oxygen, the cells kept them, and over time, the bacteria evolved into today’s mitochondria.

Chromosome structure

What is a centromere?

The compact region of linear chromosomes is called the centromere. Although this compaction is called a centromere (which refers to the center), it is usually not located exactly in the center of the chromosome, and in some cases, it is located almost at the end of the chromosome. The regions on both sides of the centromere are called chromosome arms.

The centromere helps to place the chromosomes in the right position in the cell during the complex process of cell division. Chromosomes are copied before a new cell is produced, and the centromere serves as the junction for the two halves of each replicated chromosome, known as sister chromatids.

What is chromatid?

A chromatid is one of the two identical halves of a replicated chromosome. During cell division, first, the chromosomes go through the replication process so that each daughter cell receives a complete set of chromosomes. Following DNA replication, the chromosome consists of two identical structures called sister chromatids, which are joined together at the centromere.

Chromosome structure

In simpler terms, during DNA division, when a cell divides, the cell must copy its DNA and then transfer half of it to one cell and half to another cell. As you know, DNA is arranged in chromosomes, so when a chromosome replicates or makes a copy of itself, the resulting genetic material is put together as two chromosomes, called chromatids. Then in the next stage of cell division, when the DNA is transferred to two daughter cells, one of the chromatids is transferred to each of the two cells; Therefore, a chromatid is a copy of a chromosome after DNA replication.

What is a telomere?

Telomeres are repetitive segments of DNA located at the ends of linear chromosomes. They protect the ends of chromosomes the way a shoelace protects a shoelace from unraveling.

In many types of cells, telomeres lose a portion of their DNA each time the cell divides. Eventually, when all the telomeric DNA is gone, the cell can no longer reproduce and dies. White blood cells and other cells that have a very high rate of cell division have a special enzyme that prevents their chromosomes from losing their telomeres. Because they maintain their telomeres, they usually live longer than other cells. Telomeres also play a role in cancer. Chromosomes in malignant cells usually do not lose their telomeres, contributing to the uncontrolled growth that makes cancer so devastating.

Read More: Why was the human genome never completed?

The number of human chromosomes

Humans have 23 pairs of chromosomes and a total of 46 chromosomes. All plants and animals have a specific number of chromosomes. For example, a fruit fly has four pairs of chromosomes, while a rice plant has 12 and a dog has 39.

What is a karyotype?

A karyotype is a picture of a person’s chromosomes. To produce this image, the chromosomes are separated, stained, and examined under a microscope. This is usually done using the chromosomes in the white blood cells. The chromosomes are imaged under a microscope and then cut, and the chromosomes are sorted by size from largest to smallest. An experienced cytogeneticist can identify missing or extra parts of chromosomes. The karyotype of a male is shown in the figure below.

How are chromosomes numbered?

Each chromosome is assigned a specific number based on its size. The largest chromosome is chromosome number one. For example, in humans, chromosome number 18 is one of the smallest chromosomes.

How are chromosomes inherited?

In humans and most other complex organisms, one copy of each chromosome is inherited from the female parent and the other from the male parent. This explains why children inherit some traits from the mother and others from the father. The inheritance pattern of the small circular chromosome present in mitochondria is different. Only egg cells (and not sperm cells) retain their mitochondria during fertilization; Therefore, mitochondrial DNA is always inherited from the female parent. In humans, a few diseases, including some forms of hearing impairment and diabetes, have been linked to mitochondrial DNA.

Are male chromosomes different from female chromosomes?

Yes, they differ in a pair of chromosomes known as sex chromosomes. Females have two X chromosomes in their cells, while males have one X chromosome and one Y chromosome. Inheriting extra or fewer copies of sex chromosomes can lead to serious problems. For example, women with extra copies of the X chromosome tend to be taller than average, and some have mental retardation. Men with more than one X chromosome have Klinefelter syndrome, a condition characterized by tall stature and often impaired fertility. Another syndrome caused by an imbalance in the number of sex chromosomes is Turner’s syndrome. Women with Turner syndrome have only one X chromosome. They are very short, usually do not reach puberty, and some may have heart or kidney problems.

کروموزوم X و Y

Facts about X chromosome and Y chromosome

1. In the nucleus of each cell, DNA is packaged in string-like structures called chromosomes.

2. Most human cells have 23 pairs of chromosomes. One set of chromosomes comes from the mother, while the other set is inherited from the father. The 23rd pair are sex chromosomes, while the other 22 pairs are called autosomes.

3. Normally, people who are biologically female have two X chromosomes, while people who are biologically male have one X chromosome and one Y chromosome. Although there are exceptions to this rule.

4. From the point of view of female biology, people inherit one X chromosome from their father and another X chromosome from their mother. Biologically male people always get their X chromosome from their mother.

5. In terms of size, the X chromosome is about three times the size of the Y chromosome and contains about 900 genes, while the Y chromosome has about 55 genes.

6. Female mammals have two X chromosomes in each cell. However, one of the X chromosomes is inactive. This inactivation prevents transcription so that the amount of X-linked genes does not double, which can be potentially dangerous. An inactive X chromosome is compacted in the nucleus as a small compact structure called a cargo body. Objects are usually used to determine gender.

7. Changes in the structure or number of X chromosomes can lead to disease. For example, trisomy X syndrome is caused by having three X chromosomes instead of two X chromosomes. Turner syndrome occurs when women inherit only one copy of the X chromosome.

8. Some women have excellent color vision. This condition is very rare and is called tetrachromacy and is linked to the X chromosome. These women can see up to 100 million shades of color because they have four types of cone cells in their eyes instead of the usual three.

9. Contrary to popular belief, the calico is not a breed of cat, but a distinct coat color pattern that is linked to the X chromosome. More than 95% of calico cats are female. The patches of fur on a calico cat are orange and black, and the color depends on which X chromosome is inactive within each patch of the coat.

10. In genealogy, male descent is often traced using the Y chromosome, as it is only passed down from the father.

11. All people who carry a Y chromosome are related through a common XY ancestor who lived (probably) about 300,000 years ago.

12. The Y chromosome contains a gene called SRY, which causes the testicles to form in the embryo and leads to the development of the internal and external reproductive organs of the male sex. If a mutation occurs in the SRY gene, the embryo will develop female reproductive organs despite having XY chromosomes.

13. Variation in the number of sex chromosomes in a cell is quite normal. Some men have more than two X chromosomes in all their cells (the XXY condition is called Klinefelter syndrome), and many men lose the Y chromosome as they age. Smoking may accelerate this process.

14. Some genes that were thought to be lost on the Y chromosome have actually been moved and transferred to other chromosomes.

15. Most of the Y chromosome consists of repetitive DNA fragments, and special techniques are needed to sequence and determine the order of these very similar fragments.

What are chromosomal abnormalities?

Different types of chromosomal abnormalities can be divided into two main groups: numerical abnormalities and structural abnormalities.

Numerical anomalies

The condition in which a person loses one of his pairs of chromosomes are called monosomy, and the condition in which a person has more than two chromosomes instead of one pair is called trisomy. An example of a disease caused by numerical abnormalities is Down syndrome, which is characterized by mental retardation, learning problems, specific facial features, and weak muscle tone (hypotonia) in infancy. A person with Down syndrome has three copies of chromosome 21 instead of two. For this reason, Down syndrome is also called trisomy 21. An example of monosomy, in which a person lacks one chromosome, is Turner syndrome. In Turner syndrome, the female sex is born with only one sex chromosome, an X, and is usually shorter than usual and is unable to have children, and has other problems.

Structural abnormalities

Chromosome structure can be changed in several ways:

Deletion: A part of the chromosome is lost or deleted.

Duplication: Part of the chromosome is duplicated, resulting in extra genetic material.

Translocation: A part of a chromosome is transferred to another chromosome. There are two main types of chromosomal translocations. In reciprocal translocation, parts of two different chromosomes are exchanged. In Robertson translocation, a complete chromosome is attached to another chromosome at the centromere.

Inversion: A part of the broken chromosome turns upside down and then rejoins. As a result of this phenomenon, the genetic material is reversed.

Rings: A part of the chromosome breaks and forms a ring or circle. This phenomenon can be associated with the loss of genetic material or the genetic material does not change.

Most chromosomal abnormalities occur randomly in the egg or sperm. In these cases, there is an abnormality in every cell of the body. However, some abnormalities occur after fertilization, so some cells are abnormal and others are not.

Chromosomal abnormalities can be inherited from one parent (such as a translocation) or present in a new individual. This is why when it is determined that a child has some kind of abnormality, chromosomal studies are often done on the parents.

How do chromosomal abnormalities occur?

Chromosomal abnormalities usually occur when an error occurs in cell division. There are two types of cell division: mitosis and meiosis.

Mitosis results in two cells that are copies of the original cell. A cell with 46 chromosomes divides and becomes two cells, each of which has 46 chromosomes. This type of cell division occurs throughout the body except for the reproductive organs. This is how most of the cells that make up our body are made and replaced.

Meiosis leads to the production of cells that have half the number of chromosomes, i.e. 23 chromosomes, instead of 46 chromosomes. Meiosis occurs in the reproductive organs and leads to the formation of eggs and sperm.

In both processes, the correct number of chromosomes is supposed to be established in the resulting cells. Of course, errors in cell division can lead to the formation of cells that have fewer or more copies of chromosomes. Errors can also occur when chromosomes are duplicated.

Other factors that can increase the risk of chromosomal abnormalities are:

Maternal age: Women are born with all the eggs they will have in their lifetime. Some researchers believe that with age, errors appear in the egg’s genetic material. Older women are at higher risk of giving birth to babies with chromosomal abnormalities than younger women. Because men produce new sperm throughout their lives, paternal age does not increase the risk of chromosomal abnormalities.

Environment: Although there is no conclusive evidence that certain environmental factors cause chromosomal abnormalities, the environment may play a role in the occurrence of genetic errors.

Health

Discovery of the brain circuit that manages inflammation

Published

on

By

brain circuit

Researchers believe that using this new brain circuit could lead to new treatments for many immune disorders.

Discovery of the brain super circuit that manages inflammation

Researchers have found that brainstem neurons act as regulators of inflammation. These neurons can increase or decrease inflammation in response to signals sent by the vagus nerve, a collection of thousands of nerve fibers that connect the brain and internal organs.

A new study in mice shows that a peripheral immune stimulus powerfully activates the body-brain axis to regulate immune responses, according to AI. Pro- and anti-inflammatory cytokines communicate with specific populations of vagal neurons to inform the brain of an emerging inflammatory response. The brain, in turn, strongly modulates this environmental immune response process.

Cytokines are a group of water-soluble protein molecules that are secreted from various cells in response to a stimulus and are responsible for transmitting messages between cells. The consequence of the presence of cytokines is a change in the behavior of cells with secreted cytokine receptors, including growth, change, or cell death. The action and effect of cytokine produced by one cell includes more cells around the same cell, but it can have a systemic action and effect on the whole organism.

Cytokine has the effect of changing the secreting cell itself and changes in other cells, and like a hormone, it can have effects on cells far away from it.

The vagus nerve is also the longest brain nerve and the tenth pair of brain nerves out of 12 pairs of brain nerves, which is involved in swallowing food, speaking, parasympathetic activities, and digestion. The motor part of this nerve is somatic and innervates the larynx, soft palate, and pharynx. This nerve is the longest cranial nerve, and like most cranial nerves, it starts from the brain stem and is divided into many branches that innervate most of the muscles of the pharynx and larynx, esophagus, stomach, and parasympathetic heart, lung, liver, spleen, etc.

Discovery of the neuro-immune axis

Based on this study, the researchers used single-cell RNA sequencing, combined with functional imaging, to identify circuit components of this neuro-immune axis and show that its selective manipulation can effectively suppress the pro-inflammatory response while maintaining an anti-inflammatory state. 

This new brain circuit, like a thermostat, helps increase or decrease inflammatory responses so the body responds in a healthy way, said Dr. Hao Jin, who began the study as a postdoctoral researcher in Dr. Zucker’s lab.

Looking at past research, it makes sense that a master regulator controls this critical response, the researchers say. Many psychosomatic effects can actually be related to brain circuits that tell your body something.

They believe that using this new brain circuit could lead to new treatments for many immune disorders.

Promising therapeutic potential

Brain-induced transformation of an immune response pathway offers new possibilities in modulating a wide range of immune disorders, from autoimmune diseases to cytokine shock.

“This new discovery could open up an exciting therapeutic area for controlling inflammation and immunity,” said Charles Zucker, senior author of the study.

Researchers believe that controlling this newly discovered brain circuit could lead to new treatments for common autoimmune diseases including rheumatoid arthritis, type 1 diabetes, multiple sclerosis, lupus, and inflammatory bowel disease.

Read more: Brain cancer vaccine success in human trials

This new control agent could also help treat other diseases such as prolonged COVID-19 syndrome, organ transplant rejection, and cytokine storms caused by COVID-19. According to the researchers, inhibiting the activity of this circuit could make a difference in a wide range of conditions that affect the immune system and help treat dysregulated inflammatory states in people suffering from diseases and immune disorders. This study was published in the journal Nature.

Continue Reading

Health

Skin cancer: symptoms, prevention and treatment

Published

on

By

skin cancer
Skin cancer is the most common cancer in Iran. Do you know enough about this disease?

Skin cancer: symptoms, prevention and treatment

Skin cancer is the abnormal growth of skin cells. This problem generally occurs in areas of the skin that are exposed to sunlight, but sometimes it occurs in areas of the skin that are not normally exposed to light.

Continue Reading

Health

The strange ways skin affects our health

Published

on

By

health
Skin not only reflects our lifestyle but also plays an active role in our physical health and is related to various diseases.

The strange ways skin affects our health

Worn-out or unhealthy skin is a major contributor to every age-related disease, from Parkinson’s to type 2 diabetes. BBC journalist Zarya Gorot explains how skin affects health and how to protect it.

I am boating in the Ardèche Strait in the south of France when I notice people’s strange looks. It is early afternoon on a scorching July day and the sky is blue and clear. Although there are high cliffs on both sides of the river, I have never felt the sun’s rays so strongly.

The sun’s rays have turned the surface of the water into a squiggly path of brilliant light that is impossible to look at. I have chosen my outfit with the seriousness of an explorer who is going to walk in the African desert. My clothes cover my whole body and protect me from the sun. I used a wide-brimmed fishing hat as well as plenty of high SPF sunscreen and I didn’t forget my sunglasses. I am determined to prevent further aging from the sun. But are there other hidden benefits to these extreme measures of mine?

The latest research shows that our skin is not just a mirror of our lifestyle that reflects the effects of years of smoking, drinking alcohol, and stress. According to the new view, the skin as the largest organ of the body is an active participant in our physical health, and wrinkled and dry skin itself causes aging.

Weird theory

In 1958, the Baltimore Longitudinal Study began, which was supposed to be a scientific study of aging with a bold and rather unorthodox hypothesis. Before that, scientists used to study donated cadavers to understand the physiology of living people. But this time the subjects were examined while their hearts were still beating and their bodies were fully alive. Researchers have followed thousands of men and women for decades to study how genes and environment affect their health.

Wrinkled and dry skin causes aging

In the two decades since the Baltimore study began, scientists have made interesting advances: from the discovery that men who were emotionally unstable were more likely to develop heart disease to the discovery that our problem-solving abilities decline slightly as we age. .

One of the most striking findings of the Baltimore study confirms what researchers have long suspected: how young you look is an accurate measure of how healthy you are inside. In 1982, researchers found that men who looked much older than their age at the start of the study were more likely to die.

In more recent studies, 99% of patients who looked at least 10 years older than their actual age had health problems. It appears that skin health can be used to predict a number of seemingly unrelated factors, from bone density to the risk of developing neurodegenerative diseases or death from cardiovascular disease. But is the skin merely a sign of damage that has accumulated in us, or is it something more complex: can it preserve the health of the healthy and worsen the condition of the unhealthy?

Chronological age and biological age

There are two main ways to measure people’s age. The first method is the standard method known as chronological age. But there is also biological age, which shows the speed of aging of the body. Biological age may vary between different people and even within the same body.

As we age, our chronological age eventually affects our appearance: skin becomes thinner and more uneven, and its elasticity decreases; Because the cells responsible for the production of pigment and collagen die or get old. But usually, the environment causes real damage to the skin.

Although UVB rays can damage our DNA and cause sunburns, mutations, and skin cancer, 95% of all UV radiation reaching the Earth’s surface is UVA. This part of the sun’s rays has a longer wavelength and can penetrate deep into the skin, break down collagen, and stimulate cells to produce melanin.

At the microscopic level, skin that has aged due to exposure to sunlight is thicker and has malformed collagen and elastin fibers. On the visible surface, such skin has an uneven color and is significantly more wrinkled.

Even the darkest skin can burn and is susceptible to photoaging, although it takes longer for wrinkles to appear.

SkinWhile UVB rays usually damage the surface of the skin, UVA penetrates deep into the skin and both can cause systemic inflammation.

Internal factors are thought to be responsible for a small part of skin aging, while UV light is responsible for more than 80% of visible skin changes.

Along with the physical effects described, the skin also undergoes a chemical transformation, and this is something that may have a profound effect on our general health.

Inflammatory aging

In 2000, a group of scientists from the University of Bologna in Italy proposed a new way of thinking about aging by observing how organisms react to stress.

In a healthy young person, the immune system normally functions to maintain order, that is, to repair damage and fight off infections. But when we age or when our health is not good, these inflammatory responses can cross a certain threshold and trigger the release of a cascade of powerful chemicals that travel throughout the body, destroying healthy cells and breaking DNA.

Even the darkest skin is susceptible to sun aging and can burn

The term inflammatory aging is used to describe the global inflammation that accompanies the aging process. Research shows that wrinkled, diseased, or damaged skin becomes part of the inflammatory system and releases chemicals that cause further damage and inflammation.

Higher levels of inflammatory cytokines and chemokines are observed in aged skin. These chemicals destroy collagen and elastin and cause thinning, wrinkling, and loss of skin elasticity. They also disrupt the skin barrier, increasing water loss and susceptibility to stressors. This feedback loop combines with aging cells in the skin, which in turn release their own inflammatory chemicals. Chemicals released by unhealthy skin enter the bloodstream and from there reach different tissues and damage them. The result of this is accelerated aging and a higher risk of various diseases.

So far, old or diseased skin has been associated with the onset of cardiovascular disease, type 2 diabetes and cognitive disorders, as well as Alzheimer’s and Parkinson’s disease.

The importance of skin protection

The first step to protecting your skin is to avoid the sun. In order to protect the skin, observe the following:

  • Wear protective clothing against sunlight.
  • Use sunscreen with a high protection factor.
  • Wear a brimmed hat.
  • Use sunglasses.
  • Do not stay in the sun as much as possible.

Protecting the skin from the sun is very effective in preventing the visible signs of aging. In a preliminary study, those who used a broad-spectrum sunscreen with an SPF of 15 every day for four and a half years showed no signs of further skin aging.

Rubbing the cream on the skinMoisturizing the skin reduces inflammation.

The important thing in choosing a sunscreen is to choose a product that is broad-spectrum. Broad-spectrum sunscreen not only absorbs or reflects UVB (indicated by SPF) but also protects against UVA. Dermatologists recommend that you always check the product label for UVA protection. Protection against UVA is usually indicated by UV-PF or PPD.

Sunscreen can prevent inflammation that occurs when the skin is exposed to the sun, and as previously mentioned, inflammation is the first step toward aging-related diseases. But using sunscreen is not the only way to maintain skin health.

The easiest way to improve skin health is to moisturize it. Moisturizing the skin reduces inflammation and may even help prevent dementia.

In addition to uneven color and wrinkling, skin that has aged due to exposure to sunlight and age is drier. The moisture level of human skin reaches its peak at the age of 40, and after that, it decreases drastically and produces less amounts of natural moisturizers, namely lipids, filaggrin, sebum, and glycerol.

Dry skin is problematic because when the skin is dry, its function as a barrier between the inside and the outside of the body is weakened. When our skin is dry and scaly, its natural functions (keeping out infectious agents, environmental toxins, and allergens while maintaining moisture) become more difficult.

Sunburn of the skinSun-damaged skin releases chemicals that contribute to systemic inflammation and increase the risk of age-related diseases.

Adding moisture to the skin is not a complicated task, and this simple intervention produces significant results.

A group of researchers asked elderly volunteers to use a topical moisturizer twice a day for a month. Compared to older participants who did not use moisturizer, their skin was significantly repaired and their skin levels of inflammatory chemicals were lower.

Even the simplest moisturizers can help prevent inflammatory aging

The promising results of the above study were followed by another study in which people over the age of 65 used a moisturizing cream twice a day for three years. The cognitive performance of the participants was measured at the beginning and at the end of the study. After three years, the cognitive performance of the participants in the control group had declined significantly, but the cognitive performance of the group that hydrated their skin had not.

Read more: Inventing a new drug to treat influenza

Dry skin usually has a higher level of inflammation and is often itchy. A decrease in the level of hydration of the stratum corneum (the outer layer of the epidermis) probably plays a major role in inflammatory aging. On the other hand, scratching the skin intensifies the inflammation.

Natural ingredients include glycerol, petroleum, hyaluronic acid, and lipids that are normally found in the outer layer of the skin and are also the natural components of the most basic moisturizers. Drinking more water may also help hydrate the skin, although the evidence is unclear.

To visualize how much skin can affect the rest of your body, think about how much skin you have. There is as much skin on the inside of your body as there is on the outside of your body. When skin is damaged, every inch of it can release toxic chemicals. Therefore, protecting the skin from the sun is a very effective solution, but don’t forget to use moisturizer as well.

Conclusion

The skin not only indicates the internal state of our body and our lifestyle but also plays a role in age-related diseases. When the skin is exposed to environmental factors, especially sunlight, in addition to changes in appearance, it undergoes chemical changes and contributes to various diseases by participating in global inflammation.

Use a broad-spectrum sunscreen to protect your skin from the sun. Using a moisturizer also helps prevent and reduce inflammation and prevent skin damage.

Continue Reading

Popular