Climate change and tsunamis that will come from Antarctica. A new study warns that climate change could trigger giant, deadly tsunamis from Antarctica, as sediment slippage beneath the Antarctic seafloor could trigger these massive tsunamis as oceans warm.
Climate change and tsunamis that will come from Antarctica
Climate change could trigger giant tsunamis in the Southern Ocean by triggering underwater landslides in Antarctica, a new study warns. Antarctica is a continent at the south pole of the earth. This continent is the coldest place on earth and more or less its entire surface is covered with ice.
Antarctica is the fifth largest continent on Earth after Asia, Africa, North America, and South America, but it has the least human population among all continents. It also has the highest average height, the lowest average humidity, and the lowest average temperature among all the continents of the world.
Read More: How does air pollution destroy our sense of smell?
More than 80% of the freshwater reserves of the planet are located in Antarctica. In this continent, nearly 30 countries have nearly 70 research bases, of which 40 are annual or permanent bases and 30 are summer bases.
Now, by drilling in sediment cores hundreds of meters below the seabed in Antarctica, scientists found that during previous periods of global warming (3 million years ago and 15 million years ago), loose sedimentary layers were formed and slid to send huge tsunami waves to the coast of South America, New Zealand.
As climate change warms the oceans, researchers think it’s possible that these tsunamis will occur again.
In a statement, Jenny Giles, a lecturer in hydrography and ocean exploration at the University of Plymouth in the UK, said in a statement: “Undersea landslides are a major hazard with the potential to cause tsunamis that could lead to loss of life.
” He added: “Our findings show how we need to urgently increase our understanding of how global climate change affects the stability of these regions and the potential for future tsunamis.”
For the first time in 2017, researchers found evidence of ancient Antarctic landslides in the eastern Ross Sea. Beneath these landslides are layers of weak sediments filled with fossilized marine organisms called phytoplankton.
Scientists returned to this area in 2018 and drilled deep into the seabed to extract sediment cores. These excavations are done by sinking long and thin cylinders into the earth’s crust, which reveal the geological history of the region layer by layer.
By analyzing these sediment cores, the scientists found that the weak sedimentary layers formed during two periods, one about three million years ago during the warmth of the mid-Pliocene period and the other about 15 million years ago during the favorable climate of the Miocene period.
During these periods, the waters around Antarctica were three degrees Celsius warmer than today, which led to an explosion of algae populations that, after dying, filled the seabed with rich, slippery sediment, making the region prone to landslides.
During the subsequent cold climate and Ice Age, these slip layers were covered by thick layers of sand, said Robert McKay, director of the Antarctic Research Center at Victoria University of Wellington and chief scientist of the International Ocean Exploration Program Expedition 374, which extracted sediment cores in 2018. The bulk was covered by glaciers and icebergs.
The exact trigger of past underwater landslides in the region is not known for certain, but researchers have found the most likely cause to be the melting of glacier ice due to global warming. The end of Earth’s periodic ice ages caused the ice sheets to shrink and retreat, lightening the load on Earth’s tectonic plates and pushing them back up in a process called isostatic rebound.
After the formation of enough weak sedimentary layers, the continental growth of Antarctica triggered earthquakes that caused the coarse sand above the sliding layers to spill out from the edge of the continental shelf, which caused landslides and tsunamis.
The scale and size of ancient ocean waves are unknown, but scientists point to two undersea thrusts that generated massive tsunamis and caused significant loss of life. The first was the Grand Banks tsunami in 1929, which created waves 13 meters high and killed about 28 people on the coast of Newfoundland, Canada, and the second tsunami in Papua New Guinea in 1998, which created waves 15 meters high and killed 2,200 people.
Considering that many layers of sediment are buried under the Antarctic bed and the glaciers above the water are also slowly melting, the researchers warn that if their melting really caused tsunamis in the past, landslides and tsunamis in the future may occur again.
Those same layers still exist on the outer continental shelf, says McKay. So it’s a starting point for more of these thrusts to occur, but the big question is whether the trigger for these events is still ongoing.
He added: “We consider isostatic rebound as a logical potential driver, but it could be a random failure or climate change in ocean currents eroding sediment at key locations on the continental shelf that could cause this to happen.” These are things we can use computer models to evaluate in future studies.
This study was recently published in the journal Nature Communications.